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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

DYNAMIC ANALYSIS AND ACTIVE CONTROL OF LATTICE STRUCTURES

by Paulo José Paupitz Gonçalves

This thesis presents an investigation of the factors controlling the performance of two

forms of active vibration control applied to lattice structures, such as those used for

space applications. The structure considered is based on a lattice structure assem-

bled by NASA in 1984. It consists of a satellite boom with 93 aluminium members

connected rigidly through 33 spherical joints. The structure has two distinct forms of

motion which are categorized in terms of short and long wavelength modes. The short

wavelength modes occurs when the length of the individual members is a multiple of

half wavelength of bending waves. The second category, named long wavelength modes

occur when the length of the whole structure is a multiple of half wavelength of waves

propagating by longitudinal motion in the structure. Simple expressions are derived to

identify the factors that control the frequency bands where short and long wavelength

modes occur. It is possible to alter the dynamic behaviour of the system by changing

some of the factors in these expressions and thus study the active and passive con-

trol of vibration in a variety of such structures. The two strategies of active control

considered in the thesis are feedforward control and integral force feedback control.

Feedforward control usually requires deterministic forms of disturbance sources while

feedback control can be applied to random disturbances. It has been found that short

wavelength modes can reduce the performance in the feedback control strategy, while

the results of feedforward control are not affected so much. To support this analysis,

the energy dissipation and power flow mechanisms in the structure are studied. The

results in this thesis are based on numerical simulations and experimental tests which

have been used to validate the mathematical model of the structure.
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Chapter One

Introduction

1.1 The vibration problem in space structures

Large deployable structures, which can be launched in a packaged condition and ex-

panded in space, have been necessary since the beginning of space exploration. An in-

creasing number of space systems are being developed for telecommunication, weather

monitoring and earth and space sciences. The Japanese Institute of Space and Astro-

nautical Science (ISAS), has predicted that Japanese satellites will be launched at the

rate of one per year [1], for example. In order to reduce spacecraft launch costs, space

structures should be assembled using slender components made of light materials such

as aluminium or graphite/epoxy composites [2]. These components tend to be flexible

compared to those used for civil engineering applications. The flexibility of these com-

ponents and the associated low values of structural damping (typically ∼ 0.5 percent

critical) are in contrast to the requirements for space applications and have shown to be

a challenge for engineers and scientists [3, 4]. The absence of air is also another cause

of the problems, because surrounding fluid can have a great influence on the damping

of light structures. Future space missions involving optical interferometers and space

telescopes may make use of large space structures of the order of 100 metres across

[5, 6] and in some cases these structures may reach the order of kilometres across,

as discussed in reference [7]. The requirements for vibration levels in such structures

would, however, be on the scale of micro and nano-vibrations [8, 9, 10, 11, 12]. The

National Aeronautics and Space Administration (NASA) has developed the program

for Control of Flexible Structures (COFS) [13] concerning the interaction of flight con-

trol, structure and gimbal systems. According to Balas [14], some of the challenges for

the design of such systems are because they are distributed parameter systems (DPS)

and consequently infinite dimensional in theory, with very large dimensions in practice.

These systems have many low frequency resonances which often appear closely spaced.

Moreover, performing experimental tests for large spacecraft prior to launch is quite

limited. There are various sources of disturbance in the space environment. A struc-
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Chapter One 1.1. The vibration problem in space structures

ture in the hard vacuum of space is subject to non-uniform temperature distribution

due to the different heat transfer modes. A typical structure in orbit has significant

temperature gradients in different parts. Thermal shock excitation can occur to the

system in orbit (every about 90 minutes in some cases), due to the path through the

Earth’s shadow. This can be seen in the example shown in figure 1.1 for the point error

of the Hubble telescope extracted from reference [15]. Also the position of the struc-

ture in space creates the conditions for the system to have high temperature gradients,

making some parts of the system deform more than others [16].

Reaction wheels, or momentum wheels, are equipment used to give attitude control

to spacecrafts. These devices are used on many satellites to hold them steady or

move the pointing direction from one place to another. They increase the pointing

precision and reliability of a spacecraft, and may also reduce the mass fraction needed

for fuel. Momentum wheels are usually implemented as special electric motors. Both

spin-up and braking are controlled electronically by computer. Since the momentum

wheel is a small fraction of the spacecraft’s total mass, easily-measurable changes in its

speed provide very precise changes in angle. It therefore permits very precise changes

in a spacecraft’s attitude. For this reason, momentum wheels are often used to aim

spacecraft with cameras or telescopes. Vibration from these devices is often generated

by the bearings, although shafts are also never totally balanced. These factors can

cause disturbances with the frequency of rotation and its harmonics. Digital tape

recorders have also been suggested as sources of tonal disturbances. Infrared sensors,

vital to remote sensing, often require cooling before useful signal-to-noise ratios can be

achieved. This is due to the thermal generation of current in semiconductor devices

(detectors) even when there is no incident radiation (signal). To solve the problem,

mechanical coolers are used, which involves thermodynamic cycles, and consequently

use some sort of compressor which, is a well known source of disturbance. In summary

the sources of vibration in a space structure can be regarded as being composed of

harmonic disturbance from rotating equipment and random disturbances from other

sources. An example of a typical disturbance spectrum that which a spacecraft is

subjected is shown in figure 1.2, where this figure has been extracted from reference

[17]. The vibration can be controlled using a number of techniques, both passive and

2
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active, although the performance of an active control system will depend in the type

of disturbance.

1.2 Introduction to lattice structures

In the literature, the terms Truss and Frame are both used to describe lattice struc-

tures and come from the field of static analysis. These terms refers to two- or three-

dimensional structures composed of one-dimensional elements. A one dimensional-

element is long and thin, so that all its properties can be reasonably defined by a single

axial coordinate. The members of a lattice structure meet at joints. Joints can be

either pinned or rigid. At a pinned joint, members can rotate freely with respect to

one another (this configuration can be very difficult to achieve in practice for three-

dimensional lattice structures) [18]. At a rigid joint, members are connected in such a

way that no member can rotate freely with respect to the joint and in this case mo-

ments are transmitted from one member to one another due to joint rotation. Various

terms are found in the literature to describe the one-dimensional elements of lattice

structures, such as bar, strut, rod and beam. For planar lattice structures, three vari-

ables are necessary to represent the motion of a point in the system while for space

lattice structures six variables are required to represent the motion of one point.

Lattice structures have attracted the attention of engineers for many years. The first

applications of these structures can be found in the field of civil engineering. One of

the earliest publications describing the use of lattice structures is The Four Books of

Architecture published in 1570 by A. Palladio [19]. The American Society of Civil

Engineers [20, 21] has published an extensive survey on the theme prior to 1975. In

the aerospace engineering field, lattice structures are employed in applications such as

solar energy panels, solar sails, large astronomical telescopes, communication antennae

and space station structures. These structures should have a minimum weight and

lattice structures have an easy way of packing, deployment and construction in space.

Most developments of large space structures was conducted in the nineteen eighties

[22]. During the mid 1980’s, NASA developed the Assembly Concept for Construction

of Erectable Space Structures(ACCESS) program [23]. It was the first experiment to

study orbital construction in Extra Vehicular Activity (EVA) . This program gave an
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idea of how space construction would be conducted in future.

1.2.1 The structure studied in this thesis

The structure studied in this thesis is based on a scaled version of the satellite boom

deployed and assembled in space by NASA during the program ACCESS (Assembly

Concept for Construction of Erectable Space Structures). This structure was already

available in the Dynamics Group Laboratory in the Institute of Sound and Vibration

(ISVR) from previous work [24, 25, 26]. It is a tetrahedral lattice structure with 93

members connected by 33 joints connected rigidly to the members, and is shown in

figure 1.3. A schematic figure with the joint numbering scheme and a coordinated

reference system (xyz ) is shown in figure 1.4. Some authors [27, 28] have categorized

such type of structure as a Single Bay-Single Laced Beam lattice structure. The system

has 10 equal spaced bays and has approximate scale of 1.0/2.7 compared to the full-size

ACCESS structure. The total length of the laboratory structure is 4.5 metres. Other

differences are the cross section of the structural members, which in the ACCESS

structure has a hollow cross section and in the structure considered in this work has a

solid cross section. Beam members are made of aluminium with Young’s modulus of

6.897× 1010 N/m2, density of 2.684× 103 kg/m3 and diameter of 0.00635 m and each

joint has mass of 0.022 kg. The joint coordinates are given in table 1.1. The members

defining a bay are called Longitudinals (or Longerons), Battens and Diagonals and

they are identified in figure 1.5. Figure 1.6 shows the views from different perspectives

for one of the structure bays. All the analysis in this thesis is based on the assumption

of linearity of the system.

1.3 Introduction to the dynamic behaviour of lattice struc-

tures

Lattice structures have a special dynamic property: the coexistence of very different

short and long wavelength modes of vibration [29]. These modes are controlled by

different mechanisms and they occur in lattice structures almost ”independently”. The

Long Wavelength Modes (LWM) occur when the length of the structure is a multiple
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Chapter One 1.3. Introduction to the dynamic behaviour of lattice structures

of half wavelength of the waves propagating longitudinally in the whole structure.

This mode shape is characterized by longitudinal compression and extension of the

individual members. In most cases LWM can be compared to the mode shape of

equivalent continuous systems, such as a beam or a plate. For this reason, a technique

called Continuum Modelling of lattice structures [30] has been used to predict natural

frequencies and mode shapes in the long wavelength regime. An example of a LWM

for the structure considered in this thesis is shown in figure 1.7. In this example the

LWM can be compared to the bending mode shape of a continuous beam.

The other form of behaviour exhibited by lattice structures are the Short Wavelength

Modes (SWM). The SWM is generally dominated by bending of the individual struc-

tural members. They occur when the length of a structural member is a multiple half

wavelength of bending waves propagating in the individual members. An example of

a SWM is given in figure 1.8, showing the bending of some structure members.

Because lattice structures are assembled using many similar coupled subsystems, many

SWM may occur in a narrow frequency band. Manufacturing imperfections and small

non-linearities (joint backlash, member buckling, joint friction, etc), can, however,

cause the natural frequencies to change from one member to the others, increasing

the number of natural frequencies and causing a phenomenon called mode localization,

where the motion is confined in a few regions of the system [31, 32, 33, 34]. SWM can

be beneficial in terms of vibration, if they work as absorbers, as discussed in reference

[29], or they may be undesirable if they interfere with an active control strategy, for

example. In many mechanical systems, SWMs occur only in mid and high frequencies,

lattice structures, however, may exhibit this behaviour in frequencies even lower than

the LWMs, if they are composed of long slender elements. The mathematical tools used

to analyse mechanical systems, such as modal analysis, are based on the assumptions

that the structure is dominated by a few, well spaced, modes. Conventional modal

analysis can only be used up to the high frequency acoustic limit, when the spacing

between modes becomes comparable with their bandwidth, as discussed by von Flotow

[35]. The term acoustic limit is used here in reference to von Flotow work, but it is

dificult to define a boundary between structural dynamics and structural acoustics,

indeed, one might even insist that the former includes the later. This limit can be
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different for different structures, for an aicraft a resoanable division my by a few tens

of Hz, for large space structures a few Hz. Another way to understand the dynamics

of regular lattice structures is through periodic structures theory. A periodic structure

is a system with repeating units, consisting of identical substructures, or cells. This

type of structure exhibits dynamic characteristics that makes it act as a mechanical

filter for wave propagation. This means that waves can propagate along the structure

within certain frequency bands, called Pass Bands and the wave propagation is blocked

within other frequencies bands called Stop Bands. The theory of periodic structures was

initially developed for solid sate applications [36] and extended, in the early seventies, to

the design of mechanical structures [37, 38]. Since then, the theory has been extensively

applied to various types of structures, such as spring-mass systems [39], periodic beams

[40] and space structures [41]. Assembling a structure with periodic units can have

advantages, as the system becomes easy to construct and assemble. One disadvantage

of a periodic structure, however, is that it can transmit vibration very efficiently at

certain frequencies [42].

1.4 The active vibration control in space lattice structures

Some desirable characteristics of vibration in the space structures are

• rapid decay of transient disturbances

• desired frequency spectrum and mode shapes, so that natural frequencies of the

system are not coincident with the usual working frequencies of rotating equip-

ment, for example.

• adaptability to passive and active control

It is known, however, that space structures and the materials used for their construction

do not have all these desirable characteristics. To reduce the addition of mass usually

inherent to passive vibration control approaches, active vibration control is often con-

sidered to reduce vibration levels. However, as discussed by von Flotow [29] concerning

the equipment for active control, ”If all equipment used in the experiment is included,

it is doubtful if an experiment has been performed in which the control system weight is
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less than the structure!”. Nevertheless, flight hardware tends to be less massive than

laboratory equipment. Moreover, active control is not used as a substitute for passive

control, but is used as a complementary technique. This has also been discussed by

Preumont [10], who describes the application of a large interferometer system that

required an active control system as well as passive damping treatment applied to the

structure.

Active control makes use of sensors, actuators and a signal processing unit in order to

reduce vibration levels in selected positions in the system. Piezoelectric transducers are

often used as feedback or reference sensors and as actuators to transform mechanical

energy into electrical energy and vice versa. The sensors usually measure point-wise

variables which may be more or less sensitive to excitations at various points. When

controlling vibration in a distributed system, every point in the structure is related

to every other point dynamically. Although the vibration levels in the vicinity of the

sensors are reduced by the control action, vibration in other areas on the structure

could be adversely affected as discussed in reference [43].

An ideal actuator/sensor for vibration suppression (in terms of space applications)

would be electrically powered, with high efficiency, would have low mass and would

have a high bandwidth. The high bandwidth is important so that the roll-off charac-

teristics of the closed loop system can be designed regardless of the dynamics of the

actuator/sensor.

In active lattice structures, members (or part of them) are usually replaced by piezo-

electric actuators, which then become active members. These piezo-actuators act in the

structure applying two forces in parallel to the axis of the members but with opposite

directions. References [10, 44, 45] are examples of applications of piezo-actuators to

control vibration in lattice structures. Reference [46] discusses the power requirements

for use of piezoelectric actuators is space structures and reference [47] presents a review

of the recent advances on the optimization of actuators for smart structures. Other

types of actuators have also been used to control vibration in structures; shape memory

alloy has been used to control low frequency vibration in a lattice structure [48] and

piezoelectric actuators have been used to control vibration in a lattice structure by

means of tendons [49]. Electromagnetic actuators have tended not to be used in space
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structures because generally only small displacements are required that can be gener-

ated piezoelectrically with less weight. More recent work on active control of vibration

in space structures can be found in references such as [50, 51, 52, 53]. In terms of gen-

eral control strategies, two active control frameworks have been proposed, feedforward

and feedback. The use of the feedforward control strategy has been discussed for noise

control applications in [54] and for vibration control [55]. Reference [25] is an example

of an application of feedforward to control vibration in a lattice structure.

Feedback control strategies have been more widely applied in the active control of

vibration, perhaps because feedforward control strategies require a reference signal

correlated to the disturbance and the feedback control strategy does not. The feedback

control strategy is discussed in many books, for example [56, 57]. In the vibration

control area, references [10] and [58] discuss various control strategies and aspects of

the integration of system and sensors/actuators. The differences between feedforward

and feedback control strategies are illustrated in the block diagrams of figures 1.9 and

1.10. The variable to be controlled in these block diagrams is a vector of velocities vm.

In both cases, the systems are subjected to the vector of disturbance forces fd. The

mobility matrix Ymd relates the vector of velocities vm to the vector of disturbance

forces fd and Ymc is a matrix of mobilities relating the vector of control forces fc to

the vector of velocities vm. The control forces are determinate by the matrices of

controllers gains Hff and Hfb. In the case of feedforward control, Hff is driven by a

reference signal correlated to the disturbance force, while for the feedback controller,

Hfb is driven by the vector of controlled velocities vm. These control strategies are

further discussed in chapter 4 and 5.

1.4.1 Objective function for vibration control

Often in applications of active vibration control it is common to use quadratic cost

functions, based on the square of a quantity such as acceleration or velocity. The

formulation of sensible cost functions for similar applications has been discussed in

references [24] and [59]. In this thesis, the objective function is defined as the sum of

the linear squared velocities of the joints 31, 32 and 33 of the lattice structure showed

in figure 1.4. This objective function, or Cost Function J , is proportional to the kinetic
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energy at these joints and it is calculated from

J(ω) = vH
m(ω)vm(ω) (1.1)

where, ω is the angular frequency. vH
m(ω) is the Hermitian form of the vector vm(ω)

(conjugate transpose). Suppressing the symbol ω for simplicity, the vector vm is defined

by

vm =
[
v31

x v31
y v31

z v32
x v32

y v32
z v33

x v33
y v33

z

]T

(1.2)

where, v31
x is, for example, the velocity of joint 31 in the x direction. T is the transpose

of the vector. For a general control strategy, the performance of the controller can be

measured by considering the change in the cost function. The attenuation for a certain

control is defined in decibels as

Attenuation [dB] = 10 log10

J(ω)

Jc(ω)
(1.3)

where Jc is the cost function when active control is applied to the system and J(ω) is

the cost function without control.

1.5 Objectives and Contributions

The objectives of the thesis are:

1. To develop simple expressions to indicate the frequency regions where short and

long wavelength modes occur in lattice structures;

2. The application of feedforward and feedback control strategies for the reducing

of vibration in space lattice structures and comparison of these strategies.

3. To demonstrate the influence of active control in two different regimes of vibration

present in lattice structures (short and long wavelength modes).

4. To investigate, using power analysis, the way in which energy flows and is dissi-

pated in lattice structures, including the influence of active control.

Contributions to the established literature have been made in each of these areas. Parts

of this work have been presented in references [60, 61, 62, 63].
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1.6 Summary of the thesis

The thesis is divided into six chapters. This first chapter is an introduction and mo-

tivation to the work. The second chapter is a review of the methods used to model

lattice structures. Particular attention is given into the structure considered in this

thesis. The dynamic stiffness method, using exact solutions of wave equations and the

finite element method, is then used to obtain a model, which is compared to the results

of experimental tests. In chapter 3, the detailed dynamics of the lattice structure is

considered, including analysis of energy through a study of power flow and power dis-

sipation in the structural members. The chapter also presents an analysis of short and

long wavelength mode shapes, developing simple expressions to explain the behaviour

and its influence in the dynamics of the structure. In chapter 4, the performance of a

feedforward control strategy is investigated. The cases of one, two and three actuators

are considered. Power analysis is used to determine the physical effects of this type

of control strategy. The performance of such active controller is studied for the differ-

ent regimes of vibration (short and long wavelength modes). Chapter 5 considers an

implementation of the feedback control strategy. Only the decentralized case is consid-

ered, using integral force feedback. The performance of the controller for the different

dynamic regimes is also discussed (short and long wavelength modes). Power analysis

is used to aid understanding of the dynamics of feedback control. The last chapter is a

summary of the thesis including a list of conclusions with suggestions for future work.
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Joint Number Coordinates

x y z

1 0 0 0
2 0

√
3L/2 L/2

3 0 0 L
4 L 0 0
5 L

√
3L/2 L/2

6 L 0 L
7 2L 0 0
8 2L

√
3L/2 L/2

9 2L 0 L
10 3L 0 0
11 3L

√
3L/2 L/2

12 3L 0 L
13 4L 0 0
14 4L

√
3L/2 L/2

15 4L 0 L
16 5L 0 0
17 5L

√
3L/2 L/2

18 5L 0 L
19 6L 0 0
20 6L

√
3L/2 L/2

21 6L 0 L
22 7L 0 0
23 7L

√
3L/2 L/2

24 7L 0 L
25 8L 0 0
26 8L

√
3L/2 L/2

27 8L 0 L
28 9L 0 0
29 9L

√
3L/2 L/2

30 9L 0 L
31 10L 0 0
32 10L

√
3L/2 L/2

33 10L 0 L

Table 1.1: The coordinates of the lattice structure joints considered in this work where
L = 0.45 metres is the length of one bay.
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Figure 1.1: Orbital day disturbance profile of the Hubble Space Telescope Pointing System.
Figure has been extracted from Foster et al. [15].

Figure 1.2: Stochastic reaction wheel axial-force disturbance power spectral density assuming
a uniform random variable wheel speed over the interval (0, 3000) r/min. Figure has been
extracted from Neat et al. [17].
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Figure 1.3: A photograph of the lattice structure available at the Dynamics Group Laboratory
in the Institute of Sound and Vibration Research.
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Figure 1.4: The lattice structure considered in this thesis with 93 members and 33 joints with
respective numbering scheme oriented in a global coordinate system (xyz).
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Figure 1.5: A bay of the lattice structure defining the three types of members, longitudinal,
batten and diagonal.

Side View

Side View

Top View

Top View
Front View

Front View

Figure 1.6: The various views of one of the lattice structure bays.
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Figure 1.7: An example of a long wavelength mode for the structure considered in this thesis.

Figure 1.8: An example of a short wavelength mode for the structure considered in this thesis.
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Figure 1.9: Block diagram showing the elements of a feedforward control system.
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Figure 1.10: Block diagram showing the elements of a feedback control system.
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Chapter Two

Modelling of lattice structures

2.1 introduction

In this chapter methods of modelling the dynamics of the lattice structure described

in chapter 1 are discussed. One of the approaches, called the direct method [64], is

described in detail. The model of the structure is used to predict the cost function,

defined in chapter 1 and other dynamic characteristics, such as power flow and mech-

anisms of energy dissipation. The model is also used in the investigation of active

vibration control discussed in chapters 4 and 5.

2.2 Introduction to modelling of lattice structures

The analysis of lattice structures is based on the dynamics of its members which are

one dimensional distributed parameter elements. A lattice member can have four

different types of motion; longitudinal, torsion and bending in two orthogonal planes.

In this work, Euler-Bernoulli beam theory is used to analyse the lattice members. This

assumes that the thickness of the beam is smaller than 2π times the wavelength of a

bending wave at the highest frequency of interest [65]. The analysis of Euler-Bernoulli

beams is presented in a complete and comprehensive text by Bishop and Johnson [66].

For the cases where Euler-Bernoulli theory is not applicable, Timoshenko beam theory

should be used [67, 68, 69].

In the literature, the terms Truss and Frame are frequently used to describe lattice

structures composed of one-dimensional elements. Each one-dimensional element is

long and thin, so that all of its properties can be reasonably defined by a single axial

coordinate. The term truss is used for lattice structures with pinned joints where forces

are applied only at these joints, therefore the members of a truss submitted to static

loads react only with forces that are axial. In this situation, the members of a truss

are modelled as linear ”springs” that can move only in the longitudinal direction.

For dynamic analysis, modelling a structure using a “truss-like” element, is only pos-

sible if the bending motion of the members can be neglected in the frequency range
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of analysis. If members do undergo flexural motion, bending motion is transmitted

from one member to one another by the joints due to the shear forces acting at these

joints (considering dynamic excitation). If bending of structural members is neglected

and members are modelled assuming only the dynamics associated with longitudinal

motion, the model of the whole structure will have only mode shapes due to the lon-

gitudinal compression/extension of its members. In this thesis, this type of mode is

termed a Long Wavelength Mode (LWM).

The term frame is often used to refer to a lattice structure where the members are

connected rigidly at the joints. The members of a frame structure can support different

types of load which can be applied at joints or at a position in the member. Because

joints are rigid, moments can be transferred from one member to one another through

the joints. Therefore members of a frame structure are modelled considering bending,

torsion and longitudinal dynamics of the structural members.

It is possible for a bending natural frequency of a member to be present in the frequency

range of interest causing, what is called in this thesis a Short Wavelength Mode (SWM),

which occurs when the length of one or more structural members is a multiple of half

wavelength of waves that propagate by bending in the structural members.

For the structure considered in this work, bending and torsion of structural members

should be included in the model as the joints are considered to be rigid. Lattice struc-

tures modelled using a complete beam model for its members (motion in all directions)

may or may not have SWM. The presence of short wavelength modes depends upon

the frequency range, the cross section of the lattice members, the lattice structure

geometry and its length. This is discussed in chapter 3.

2.2.1 Methods for modelling lattice structures

Most modelling methods for lattice structures consider them as a system of discrete

elements, taking into account only the responses in certain positions of the structure,

usually at the joints. These positions represent the motion of the continuous system

by a finite number of degrees-of-freedom (DOFs). Each DOF is a variable which can

be the joint displacement, velocity or acceleration (either linear or angular). For com-

putational purposes, these variables are written in vector form, and it is clear that a
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large number of DOFs increases the computational cost of analysis for a system. In

the same way, variables representing the internal and external forces at these DOFs

can be written in vector form. Because the system is continuous, each of these vectors

of forces and displacements are related to every other variable in a coupled way due to

the system continuity. In dynamic analysis, the objective of a mathematical modelling

procedure is to obtain functions that relate these forces to every other DOF dynam-

ically and vice-versa. The methods used to obtain these functions, involve physical

assumptions that start with the governing equations for a structural member. The

governing equations are transformed to the frequency domain by assuming harmonic

motion, and all time dependencies disappear, giving equations that depend only on

the frequency and on the position along the beam. The functions in the frequency

domain relating forces and displacements are known as the beam dynamic stiffness.

Once these functions are known, the overall system dynamic stiffness is obtained by

applying the conditions of compatibility for each member (making the displacement

and force vectors to be coincident with a global coordinate system) and by considering

the equilibrium condition for each system joint (where the sum of internal and external

forces for each joint is a null vector). This condition comes from the assumption that

the system is linear.

The most usual method for modelling lattice structures is the direct method. The

direct method make uses of the dynamic stiffness of members that can be calculated

directly from the beam wave equations as described by [70, 71, 72], from the series

expansion form (modal approach) [66, 72]. The traditional expressions found in these

books are, however, numerically unstable for the higher order modes usually necessary

in the calculation of the dynamic stiffness over the frequency range of interest. Nu-

merical stable forms for calculating higher order mode shapes have been developed by

Gonçalves et al. [63]. Dynamic stiffness can also be calculated by means of approx-

imation using the finite element method [73, 74]. The procedure for calculating the

overall dynamic stiffness for a structure in this method is very attractive in terms of

computational implementation, since the equilibrium condition is achieved by simply

summing the individual dynamic stiffness matrices of the members.

Another method for calculating the response of a lattice structure model is the recep-
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tance method. The receptance method is very similar to the dynamic stiffness method,

in the sense that the member receptances are the inverse of the member dynamic stiff-

nesses and they can be calculated similarly by the solutions of wave equations [66] or

by a series expansion form [66, 75, 76]. Although the computational implementation of

the receptance method for a simply structure can be easy, it becomes quite involved for

complex structures. The difference between the receptance and the dynamic stiffness

method is that the final result of the receptance method is not a receptance matrix,

but a set of equations describing the internal forces acting at the ends of each member.

An advantage of the receptance method is that intermediate information can be found

prior to solving all equations of the system in the set, and it would thus be possible

to calculate the internal forces in a few regions, without having to solve all the other

equations.

For structures with some sort of periodicity, such as lattice structures with many similar

bays, it is also possible to take advantage of the transfer matrix approach [77, 78]. In

this method, only a cell defining the system periodicity is modelled by the dynamic

stiffness or receptance method. The cell dynamic stiffness or receptance matrix is

then transformed to another representation, called the transfer matrix. The transfer

matrix relates a vector defined by the forces and displacements in the left hand side

of the cell to the forces and displacements of the right hand side. The properties of

the transfer matrix for periodic lattice structures have been studied in [41] and are

briefly discussed in the appendix H. The eigenvalues of the transfer matrix can give

information about the characteristic waves propagating from one cell to another. Using

the transfer matrix, the responses at the end of the structure to excitations at the other

end of the structure are found by simple multiplication of the transfer matrix of each

cell. Information on internal degrees of freedom are, however, not available directly.

Another method of modelling lattice structures is the continuous modelling approach.

A continuum model for a lattice structure is an approach for rapid extraction of the

system natural frequencies and mode shapes. The idea is to achieve a model by ap-

proximation of the geometry and material properties to that of a continuum system

such as a beam or a plate; hence the continuum method is not an unique approach.

It is also possible to consider non deterministic methods, such as statistical energy
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analysis. This method is the most recent technique for modelling mechanical systems.

It uses gross quantities to describe the system responses in terms of mean values. The

method is applicable for high frequencies where there is high modal density [79].

2.2.2 The methods described in this chapter

In this chapter the direct method, which is used in the remainder of the thesis, is de-

scribed in more detail using three different models for the structural members. In the

first, a complete beam model (longitudinal, torsional and bending motion) is consid-

ered and the dynamic stiffness matrices of the members are obtained using the exact

solutions of the beam wave equations. The second model considered also uses a com-

plete beam model, however, the dynamic stiffness matrices of the members are given in

terms of mass and stiffness matrices, approximated by finite element method (FEM).

In terms of computational implementation, the model which uses the exact solutions

of the wave equations is more attractive, since each structural member is modelled

as one element. To achieve similar results using the finite element (FE) element it is

necessary to divide each member into various elements. The beam model calculated

from the solutions of the wave equations is sometimes called a spectral element [80]

and it is used in this work for the predictions of power flow and simulations involving

the active control of vibration. The FE element which assumes the three different

motions for a beam in space is usually called a beam element and it is used in this

work with the purpose of extracting the system mode shapes and natural frequencies

of the lattice. The lattice structure model developed using the beam finite element is

obtained by using the commercial FE package ANSYS. The third model considered

for the structural members is also obtained from FE mass and stiffness matrices, both

bending and torsion of the structural members have been neglected by considering only

the longitudinal motion. This assumption leads to a model that has only LWMs, while

the complete beam model approach leads to lattice structure models that can have

SWMs associated with bending of the structural members.

To complement this last approach, the continuum modelling method is described for

the lattice structure considered in this work. The results at the end of this chapter show

that the continuum modelling approach is capable of giving results, such as natural
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frequencies and mode shapes which are similar to the FE model that considers only

longitudinal motion of the structural members. This method is used in chapter 3 to

determine the frequencies where LWMs occur.

2.3 The dynamics of lattice members

In this section, the dynamics of a single lattice member is considered. The structural

members can undergo different types of motion; longitudinal, torsional and bending.

Independent longitudinal, torsional and bending waves in two perpendicular planes can

exist in a lattice member. These waves can be excited simultaneously, and to represent

the motion 6 variables are necessary. It is convenient to describe the motion of the

lattice member by the displacements at its ends, since these positions are generally

connected to other subsystems.

2.3.1 The governing differential equations

The motion of a beam can be represented by a set of four partial differential equations

governing axial and torsional vibrations and bending given, respectively, by [66, 70, 72]

ES
∂2q1(x)

∂x2
− ρS

∂2q1(x, t)

∂t2
= −f1(x, t) (2.1)

G
∂2q4(x)

∂x2
− ρ

∂2q4(x, t)

∂t2
= −M4(x, t) (2.2)

EI
∂4qi(x)

∂x4
+ ρS

∂2qi(x, t)

∂t2
= fi(x, t) (2.3)

where q1 and q4 are, respectively, the axial displacement and the twist of the beam over

the line orthogonal to the beam cross section with respective external loads f1 (force

per unit length) and M4 (Moment per unit length), qi with i = 2 or i = 3 are the

lateral displacements of the beam in the two principal planes which are coupled to the

rotations q6 and q5, respectively. fi can be a force or a moment per unit length. The

variables E, G, ρ are the Young’s modulus, shear modulus, and density, respectively.

S and I are the cross sectional area and second moment of area, respectively; x and t
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are the position along beam length and the time, respectively. Equations 2.1 and 2.2

are second order partial differential equations describing axial and torsional motion,

respectively; equation 2.3 is a fourth order partial differential equation describing the

motion of the beam in bending using Euler-Bernoulli theory [66]. Assuming time

harmonic motion of the form q(x, t) = Q(x)ejωt, the solution for equations 2.1 and 2.2

can each be written in terms of propagating waves as

Q(x) = Are
−jkx + Ale

jkx (2.4)

where Q is a complex variable that can be the displacement for the case of equation

2.1 or a rotation for the case of equation 2.2. The variables Ar and Al are amplitudes

of waves propagating to the right and left, respectively. k is the wavenumber that is

defined as kl = ω(ρ/E)1/2 for longitudinal vibration and kt = ω(ρ/G)1/2 for torsional

vibration (in beams with circular cross section area) or kt = ω(ρIo/GJo)
1/2 for beams

with generic cross section, where Io is the polar second moment of area and Jo is

the torsional constant. For a fixed end, Q = 0, and for a free end Q′ = 0 (where

Q′ = ∂Q/∂x). The solution of equation 2.3 is given by

Q(x) = Bre
−kx + Are

−jkx +Ble
kx + Ale

jkx (2.5)

where Br is an evanescent wave decaying to the right, Bl is an evanescent wave decaying

to the left, Ar is a wave propagating to the right and Al is a wave propagating to the left;

k now is the flexural wavenumber and is given by kb = ω1/2(ρS/EI)1/4. The dynamic

stiffness or receptances for a beam can be calculated by applying appropriate boundary

conditions to equations 2.4 and 2.5. When connecting beams in a lattice structure, in

order to find the dynamic stiffness of the whole structure, it is the free-free boundary

condition which is necessary. For the most common boundary conditions, according to

[66] these expressions can be written as
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Chapter Two 2.3. The dynamics of lattice members

Q = 0 and
∂Q

∂x
= 0 at a clamped end

Q = 0 and
∂2Q

∂x2
= 0 at a pinned end

∂Q

∂x
= 0 and

∂3Q

∂x3
= 0 at a sliding end

∂2Q

∂x2
= 0 and

∂3Q

∂x3
= 0 at a free end



(2.6)

The dynamics stiffness and receptances can be calculated from the solutions of the

wave equations or by means of a series expansion, known as the modal approach.

The derivation of the dynamic stiffness matrix of a single lattice member is given in

appendix A.

2.3.2 Dynamics stiffness, displacement and force vectors for a single

lattice member

In order to determine the dynamic response of lattice members a numbering scheme

for the displacements of a beam in space with ends 0 and 1 is shown figure 2.1. The

displacements at beam ends 0 and 1 are represented, respectively by

q̄(0) =
[
q1 q2 q3 q4 q5 q6

]T

(2.7)

q̄(1) =
[
q7 q8 q9 q10 q11 q12

]T

(2.8)

where the super-script T denotes the transpose of a vector. The bar symbol over the

vectors indicate a local coordinate reference system. The displacements with subscripts

{1, 2, 3, 7, 8, 9} are linear displacements and {4, 5, 6, 10, 11, 12} are angular displace-

ments. Similarly, the forces and moments acting at these positions, as shown in figure

2.2, have a similar numbering scheme represented as

f̄(0) =
[
f1 f2 f3 M4 M5 M6

]T

(2.9)

f̄(1) =
[
f7 f8 f9 M10 M11 M12

]T

(2.10)
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Chapter Two 2.4. The dynamic stiffness method

where the forces with subscripts {1, 2, 3, 7, 8, 9} are for forces acting in the direction

shown and the subscripts {4, 5, 6, 10, 11, 12} refer to moments. The displacement and

force vectors defining the motion at the ends are given by

q̄ =
[

q̄T (0) q̄T (1)
]T

, f̄ =
[

f̄T (0) f̄T (1)
]T

(2.11)

The motion in axis 1 and 4 are independent from any other axis, while axis {2 and 6}

and {3 and 5} have coupled motion due to bending. The displacements and forces can

be related in the frequency domain by a dynamic stiffness matrix D as

f = Dq (2.12)

This relation can also be written in terms of sub-matrices as f̄(0)

f̄(1)

 =

 D(0,0) D(0,1)

D(1,0) D(1,1)

 q̄(0)

q̄(1)

 (2.13)

In equation 2.13 the reciprocity condition applies: D(0,1) = D(1,0)
T
. The elements

of the dynamic stiffness matrix are calculated from the beam equation of motion given

in appendix A.

2.4 The dynamic stiffness method

The dynamic stiffness method is adopted from the direct stiffness method in static

analysis where the system displacements are based on the degrees of freedom of each

joint of the lattice structure. The displacements and forces at the system joints are

written in vector form and they are related by the system dynamic stiffness matrix as

f (ω) = D (ω)q (ω) (2.14)

where q, f and D are, respectively, the displacement vector, force vector and dynamic

stiffness matrix. Considering bending, torsion and axial deformation of the members,

the dynamic stiffness matrix for a structure in space has dimension 6nj × 6nj and

the displacements and force vectors dimension 6nj × 1, where nj is the number of
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Chapter Two 2.4. The dynamic stiffness method

joints of the structure. The term ω is the angular frequency which has been dropped in

subsequent formulation for simplicity. The formulation of the dynamic stiffness matrix,

involves the application of two conditions:

1. Compatibility condition. The dynamic stiffness of the structural members are

written in terms of global coordinates using a coordinate transformation matrix.

2. Equilibrium condition. Dynamic stiffness global matrix is calculated by consid-

ering that the sum of forces at a generic joint is a null vector.

To achieve the compatibility condition, the vector of displacements for a certain mem-

ber given in local coordinates needs to be mapped into a global reference system by

means of coordinate transformation. Considering that the vector of displacements for

the n-th member in local coordinates can be written in terms of global coordinates by

means of a transformation matrix Tn as

q̄n = Tnqn (2.15)

where the vector q̄n is in local coordinates and the vector qn is in global coordinates.

Similarly, the vector of forces can be related in both coordinated by also using Tn as

f̄n = Tnfn (2.16)

The coordinate transformation matrix is calculated from the position of the ends of

the members given in global coordinates. The transformation matrix is orthogonal

[71, 73, 81], which means that T−1 = TT . Details of the derivation of the matrix are

given in appendix B. The dynamic stiffness of the beam in local coordinates can be

represented in global coordinates using equations 2.15 and 2.16 as

fn = T−1
n D̄nTnqn (2.17)

The term T−1
n D̄nTn can be written as Dn and it can be seen as the dynamic stiffness

of the member n in global coordinates. After aligning all members’ forces and displace-

ments, the dynamic stiffness matrix is calculated by assuming that the sum of force
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Chapter Two 2.4. The dynamic stiffness method

vectors at a particular joint is a null vector. In terms of computation, it can be done by

using a Boolean matrix Bn. The Boolean matrix makes the displacements and forces

of a member match to the displacements and forces of the structural joints where the

member is connected. The elements of the Boolean matrix are zero or one, such that

when the h-th element of qn is coincident with the k-th element of q, then Bhk
n = 1,

otherwise it is zero. B has dimension 12 × 6nj. After this operation, the terms of

the fundamental matrix remain unchanged, but their relative positions are altered as

follows

D̃n = BT
nDnBn (2.18)

By considering that the total energy in the system is the sum of the energies in the

individual members, and considering the conditions of equilibrium, the global dynamic

stiffness matrix can be defined by

D =
nm∑
n

D̃n (2.19)

where nm is the number of members in the structure.

2.4.1 Effect of joint masses

Considering that the joints between members are spherical with mass m and they have

small diameters, it is possible to neglect the energy related to the joint rotation and

the equation of motion for a single joint can be written as

fi = mq̈i (2.20)

where, i =1, 2 or 3 are the directions of the linear axis. Equation 2.20 can be written

in the frequency domain to give the dynamic stiffness for a joint mass mj as

Dj = −ω2mj

[
I3×3 03×3

03×3 03×3

]
(2.21)

where, I3×3 and 03×3 are the identity and zero matrices of order 3. Using a similar

procedure to the Boolean transformation of equation of equation 2.18, the dynamic
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stiffness for the joint mass is found by summing the dynamic stiffness of each joint as

Djoints =

nj∑
j

Dj (2.22)

and the dynamic stiffness of the structure, including the joint masses is found by adding

the joint dynamic stiffness Djoints to the dynamic stiffness of the structure.

2.4.2 Displacements due to external loads

The displacements due to an external load configuration can be calculated by

q = D−1f e (2.23)

where q contains the displacements of the joints due to the external loads f e applied

to the joints. The evaluation of this equation can be done by inversion of the matrix

D or by using any method to solve a set of linear equations such as Gauss-elimination.

2.4.3 The internal forces

The reaction forces acting at the end of each member due to some external applied

force are calculated using the displacements in equation 2.23 after transforming them

to local coordinates as

f̄ r
n = DnTnBnq = DnTnBnD

−1f e (2.24)

The vector f̄ r
n can be divided in two sub-vectors f̄ r

n = [f̄T
n (0) f̄T

n (1)]T which contains the

internal forces at the joints 0 and 1 of the member. For a particular joint the sum of

the internal forces in global coordinates should be a null vector as long as joint masses

are not considered in the model. For the case where joint masses are considered, the

sum of forces at a particular joint should be equal to the product −(joint mass × joint

acceleration) in each linear axis. In what follows, the internal forces for a member are

used to find the power flow through joints in the structure.
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Chapter Two 2.5. Introduction to power analysis in lattice structures

2.5 Introduction to power analysis in lattice structures

This section aims the analysis of power flow and power dissipation in the lattice struc-

ture, is a procedure similar to the work described in reference [70]. Power is the rate

at which work is performed. The SI unit of power is Watts [W]. Power is usually seen

as an energy flow, which is equivalent to the rate of change of energy in a system. It

can be defined by [82]

P =
dW

dt
=
dE

dt
(2.25)

where, W is the work and E is the energy. In mechanical systems, power can be defined

in the frequency domain as

P (ω) =
1

2
Re {F (ω) · V ∗(ω)} (2.26)

where, F is the complex amplitude of the force and V ∗ is the conjugate of the complex

amplitude of the velocity. Details of the calculation of equation 2.26 are given in

appendix D. The power in a lattice structure is exchange at the joints. The net power

exchange at a particular joint is zero. The power is calculated from the internal forces

and the velocities at the member end as

p̄n =
1

2
Re

{
f̄ r
n × ˙̄q∗

}
(2.27)

where the symbol “×” means multiplication of element by element of the vectors. The

frequency dependency has been dropped for simplicity. The bar over the vectors in

equation 2.27 means that the vectors of power, force and velocity are in local coordi-

nates and it has been dropped in subsequent formulation for simplicity, but it should

be clear that the variables are given in the local coordinates. The power vector can be

subdivided as pn = [pT
n (0) pT

n (1)]T , where pn(0) and pn(1) are the vectors of power

flowing at beam ends 0 and 1 in local coordinates, respectively. Using a numbering

scheme as in equations 2.7 and 2.8, the power at the ends of the beam can be written
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Chapter Two 2.5. Introduction to power analysis in lattice structures

as

pn(0) =
[
p1 p2 p3 p4 p5 p6

]T

(2.28)

pn(1) =
[
p7 p8 p9 p10 p11 p12

]T

(2.29)

The total power flow at the ends of the beam is found by the sum of its components as

pn(0) = p1 + p2 + p3 + p4 + p5 + p6

pn(1) = p7 + p8 + p9 + p10 + p11 + p12 (2.30)

If the average power at an end of the beam is positive, it means that power is input

into the beam at that end, if the power is negative it means that power is output from

the beam at that end. By conservation of energy, the sum of energies input, output

and dissipated by a system should be zero

pn(0) + pn(1) + pn(diss) = 0 (2.31)

where, pn(diss) is the average power dissipated in the n-th member of the structure

and by the balance of energy, it is given by pn(diss) = −(pn(0) + pn(1)). The total

power dissipated in the structure is the sum of the power dissipated in each member

given by

Pstructure(diss) =
nm∑
n

pn(diss) (2.32)

By conservation of energy, the sum of the total power input into the structure and the

total power dissipated should be zero

Pstructure(in) + Pstructure(diss) = 0 (2.33)

2.5.1 The mechanisms of power flow and power dissipation

Using the terms of equation 2.30 it is possible to categorize the power flow and the power

dissipated in a beam by considering its different mechanisms; longitudinal, torsion and

bending. For a particular member they are defined in table 2.1
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Chapter Two 2.6. The finite element method

2.6 The finite element method

The finite element method has been widely used with the advent of high performance

computers that make possible the solution of the governing differential equations de-

scribing the motion of dynamic systems. Reference [83] gives a detailed introduction

about the evolution of the finite element method. Some authors refer to as the first

publication about the finite element method an article published in 1960 by Ray Clough

[84]. The major advances in the FE method came during the 1960’s and 1970’s. In the

structural engineering area, references [73, 74, 85] are examples. In this section, two

types of finite element are discussed. The first is known as the beam element and it

considers longitudinal motion, torsional motion and bending for each structural mem-

ber. The second element is known as a truss or rod element and in this case, bending

and torsional motion are neglected. In both cases, the stiffness and mass matrices

define the system equation of motion for an undamped mechanical system given by

Mq̈ + Kq = f (2.34)

where, K and M are the mass and stiffness matrices, respectively. For harmonic

motion, equation 2.34 can be written in the frequency domain as (K− ω2M)q = f .

In the case of the beam element, the matrices have dimension 12 × 12 and for the

truss element they have dimension 6× 6. These matrices are readily available in many

finite element method text books such as [73, 85] and are given in appendix C. For

the undamped structure, the natural frequencies and mode shapes for a system can be

found by solving the eigenvalue problem

(
K− ω2

i M
)
φi = 0 (2.35)

where ωi is a natural frequency and φi is its corresponding mode shape. The structural

response can be either found by inversion of the system dynamic stiffness as

q =
(
K− ω2M

)−1
f (2.36)

or by the summation over the orthogonal modes of the system as
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Chapter Two 2.7. Continuum modelling of lattice structures

q =
i=k∑
i=1

φiφ
T
i

µi (ω2
i − ω2 + 2jξiωiω)

f (2.37)

where, k is the number of modes, ξi is the modal damping ratio, µi is the modal mass.

The orthogonal relationship gives

ΦTMΦ = diag(µi) (2.38)

ΦTKΦ = diag(µiω
2
i ) (2.39)

2.7 Continuum modelling of lattice structures

Continuum modelling is an approach that is used to reduce computational cost when

modelling large lattice structures. The approach is useful to model structures with

repeating elements, such as structures with many similar cells, where it is possible

to extract information such as natural frequencies and mode shapes. The idea is to

develop a model by approximation of the geometry and material properties to that of a

continuous system, hence the continuum method can result in different expressions for

the same system and as discussed in reference [86] it can be categorised in the following

way

1. Relating force or deformation characteristics of a repeating cell of a lattice model

to those of the continuum model;

2. Converting finite difference equations from the discrete field method into approx-

imate differential equations;

3. Using energy equivalence between lattice and continuum models;

4. Averaging the contribution of each unidirectional structural element to the overall

structural stiffness;

5. Conducting static or experimental analysis of a repeating cell to measure its

structural properties.

For the structure considered in this work, it is possible to extract the system natural fre-

quencies and mode shapes using an equivalent continuum model of an Euler-Bernoulli
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beam. The concept is shown in figure 2.3 where the overall properties of the lattice

structures are represented by the properties of a beam. Let lL, lB and lD be the length

of longitudinal, batten and diagonal members, respectively, where these members have

been categorized in chapter 1. The total length of the continuous beam model is mlL,

where m is the number of bays in the structure. Considering the free-free bound-

ary condition, the equivalent natural frequencies for the system under bending, axial

motion and torsion are given, respectively, by [27]

(ωi)C =

(
(EI)C

(ρS)C

)1/2

k2
i ,for bending motion (2.40)

(ωi)C =
iπ

mlL

(
(ES)C

(ρS)C

)1/2

, for longitudinal motion (2.41)

(ωi)C =
iπ

mlL

(
(GJ)C

(ρIo)C

)1/2

, for torsional motion (2.42)

where the sub-script C refers to the equivalent continuous property, hence, (EI)C,

(ES)C and (GJ)C are, respectively, the equivalent continuous bending stiffness, longi-

tudinal stiffness and torsional stiffness of the whole structure. Similarly, the equivalent

inertia terms are (ρS)C for bending and longitudinal vibration and (ρIo)C for torsional

vibration, the term i is the mode number. Considering the total mass of one bay in the

structure as the sum of masses of the bay members [27] (3[ρLSLlL+ρBSBlB +ρDSDlD]),

the equivalent mass distribution is easily found by dividing it by the bay length (lL)

to give

(ρS)C = 3

(
ρLSL +

lB
lL
ρBSB +

lD
lL
ρDSD

)
(2.43)

For a homogeneous structure, all members have the same material properties, and the

density of the members is represented by ρ. If it is considered that all members have

the same cross sectional area S, then equation 2.43 simplifies to

(ρS)C = 3ρS

(
1 +

lB
lL

+
lD
lL

)
(2.44)
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For the lattice structure considered in this work, the length of its members are related

by lL = lB = lD/
√

2 and equation 2.44 reduces to

(ρS)C = 3ρS
(
2 +

√
2
)

(2.45)

For torsional vibration, the term (ρIo)C can not be calculated by a similar simple

procedure. The value for (ρIo)C has been calculated in reference [27] and is given by

(ρIo)C = l2B

(
ρLSL +

1

2

lB
lL
ρBSB +

1

2

lD
lL
ρDSD

)
(2.46)

which can be simplified for the structure considered in this work (ρ = ρL = ρB = ρD,

S = SL = SB = SD and lL = lB = lD/
√

2) to

(ρIo)C = l2BρS
(3 +

√
2)

2
(2.47)

2.7.1 Equivalent bending stiffness

In this section, an expression for the equivalent bending stiffness of the lattice structure

is calculated by summing the contribution of each structural member. Considering

figure 2.4 showing the cross section of one of the lattice structure bays, where the

areas S1, S2 and S3 are the cross sectional areas of the longitudinal members. The

line defining the neutral axis ZZ is placed in position 1
3
h from the base of the triangle

as given in reference [87]. The contribution of one of the longitudinal members to the

second moment of area IZZ can be calculated by

I = Icg + δ2S (2.48)

where Icg is the second moment of area with respect to an axis parallel to ZZ and

passing through the centroid of the shape (coincides with the neutral axis); S is the

cross sectional area and δ is the distance between the neutral axis of the structure to

the centroidal axis of the member. For a circular cross section, it is given by

Icg =
πd4

64
(2.49)
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where, d is the diameter of the longitudinal member. Assuming that the cross sectional

areas S1, S2 and S3 are equal to S and using equations 2.48 and 2.49, the contribution

of the longitudinal members to the second moment of area of the structure can be

written as

IZZ,Longitudinals = 3Icg + δ2
1S + δ2

2S + δ2
3S (2.50)

where, δ1 = 2
3
h can be written in terms of the length of the members using a trigono-

metric relationship to give δ1 =
√

3
3
lB. Similarly, δ2 = δ3 =

√
3

6
lB. Equation 2.50 can

then be written as

IZZ,Longitudinals = 3
πd4

64
+
l2BS

2
(2.51)

which can be re-formulated to give

IZZ,Longitudinals =
S

2

(
3d2

8
+ l2B

)
(2.52)

For the structure considered in this thesis, 3d2

8
<< l2B, so the second moment of area

can be written as

IZZ,Longitudinals ≈
l2BS

2
(2.53)

Equation 2.53 does not take into account the contribution of the diagonal members

defined by the areas S4, S5 and S6. The area S5 has fixed position δ from the structure

neutral axis ZZ, however, the areas S4 and S6 have a varying distance δ along the

bay of the structure. In figure 2.4, two positions of these areas are shown for the bay

cross sections CS′ and CS′′ as an example. Also, the angle of the areas in the axis XX

orthogonal to the two axes Y Y and ZZ should be considered. Using the relationship

lL = lB = lD/
√

2, this angle is given by π/4 rad. The contribution of the diagonal

members to the second moment of area of the structure can then be written as

IZZ,Diagonals = sin
π

4

(
3
πd4

64
+

3

36
l2BS + δ2

4S4 + δ2
6S6

)
(2.54)
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where, δ4 and δ6 vary along the cross section of the structure. Figure 2.5 shows the

variation of the second moment of area of the diagonal members IZZ,Diagonals compared

to the second moment of area of the longitudinal members. In this figure, it is possible

to see that by the middle of each bay, the contribution of the diagonal members to the

second moment of area of the structure is minimum being about 20% of the value of

the contribution of the longitudinal members. The values of the second moment of area

in this region controls the stiffness of the bay (the members should deform in regions

with less resistance to the stress). For simplicity, in this thesis, the bending stiffness

of the bay is considered to be only the contribution of the longitudinal members and

it is defined as

(EI)C =
ELl

2
BSL

2
(2.55)

The value of the equivalent bending stiffness for the axis Y Y can be found by similar

procedure. The bending stiffness over the axis Y Y is similar to the expression given

in equation 2.55. This equation is equal to the expressions found in the reference [27]

which use an energy method to calculate the stiffness of different structures and also in

reference [28] which uses the finite difference method. According to reference [88], the

expression given in equation 2.55 needs to be modified to take into account the effect

of shear forces as

(EI)C =
(EI)∗C

(1 + Cs/m2)
(2.56)

where, m is the number of bays of the lattice structure, (EI)∗C is given by equation

2.55 and Cs depends on the mode shape, and the bay geometry given by [89]

Cs =
π2i2SL

3l3L

(
l3D
SD

+
l3B
SB

)
(2.57)

Equation 2.57 can be simplified by making the approximation S = SL = SB = SD and

lL = lB = lD/
√

2. It becomes

Cs =
π2i2(1 + 2

√
2)

3
(2.58)
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In the following sections, the expressions for the equivalent longitudinal and torsional

stiffness are given. These expressions were extracted from reference [28], where the

first equation given in each section is the form found in this reference and the second

equation is a simplified expression using S = SL = SB = SD, E = EL = EB = ED and

lL = lB = lD/
√

2.

2.7.2 Equivalent longitudinal stiffness

• The expression given in reference [28] is

(ES)C = 3ELSL (2.59)

• which can be simplified for the lattice structure considered in this thesis, to give

(ES)C = 3ES (2.60)

2.7.3 Equivalent torsional stiffness

• The expression given in reference [28] is

(GJ)C =
l4BlL

4
(

l3L
ELSL

+
l3B

EBSB
+

l3D
EDSD

) (2.61)

• which can be simplified for the lattice structure considered in this thesis, to give

(GJ)C =
l2BES

(8 + 8
√

2)
(2.62)

The natural frequencies for torsion and axial deformation of the lattice structures can

be found by similar procedures and are given in references [27, 28] for various types of

lattice structures. For the structure considered here, they are presented in table 2.2.

The formulation given in this table is used in chapter 3 to derive expressions defining

the frequencies where long wavelength mode shapes occur.
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2.8 Numerical simulations

The numerical results obtained by using the different methods discussed in this chapter

are presented in this section. The simulations were performed using the following values

for the structural members.

• Young’s modulus, E = 6.898× 1010 N/m2

• density, ρ = 2.684× 103 kg

• Poisson’s ratio, υ = 0.33

• shear modulus, G = E/2(1 + υ) = 2.593× 1010 N/m2

• structural damping, η = 0.005, (using complex Young’s modulus, E(1 + jη))

• diameter of members, d = dL = dB = dD = 0.00635 m

• length of members , lL = lB = 0.45 m, lD = 0.6364 m

• joints masses, Jmass = 0.022 kg

2.8.1 Dynamic stiffness method numerical results

Using a complete beam model (considering bending, torsion and longitudinal displace-

ments) and the dynamic stiffness method of section 2.4, mobility frequency response

functions (FRFs) were obtained by applying a harmonic force of 1 N at joint 4, in the

y direction (as shown in figure 1.4 of chapter 1) in the frequency range 20 Hz - 1 kHz,

using 1 Hz of frequency resolution. The displacements at joints 31, 32 and 33 in the

x, y and z directions were calculated and differentiated in the frequency domain to

obtain the mobility FRFs. The magnitudes of these mobilities are shown in figure 2.6.

The cost function, defined in chapter 1, is calculated by J = vH
mvm, where the vector

vm contains these mobilities. The cost function as a function of frequency is presented

in figure 2.7. Most of the resonance peaks shown in figures 2.6 and 2.7 are related to

short wavelength modes due to the bending of lattice members. This short wavelength

modal behaviour is shown in figure 2.8, where some examples of modes associated with

the bending of lattice members are given. These mode shapes were obtained using the
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Chapter Two 2.8. Numerical simulations

finite element package ANSYS with the three-dimensional beam element (defined in

the software as beam4 element). Each structural member was divided into 12 finite

elements. The results show that, at low frequencies, before any long wavelength modes

occur, many short wavelength modes have occurred. The mode count graph also shows

that this system has a high modal density in this frequency band. The implication of

such high a modal density in the dynamics and control of a lattice structure is discussed

in chapter 3, 4 and 5.

2.8.2 Finite element method numerical results

Considering the longitudinal motion and neglecting bending and torsion of the structure

members, a numerical model was obtained by the approach described in a previous

section. Similar to the results obtained using the complete beam model, a cost function

for the system, comprising the sum of the squared absolute linear velocities at joints

31, 32 and 33 in direction x, y and z have been calculated for a harmonic force of 1

N applied at joint 4 in the y direction. The resulting cost function is compared with

the results of the dynamic stiffness method in figure 2.9. The model obtained using

the truss finite element (torsion and bending of structural members is neglected) does

not contain any resonance peaks associated with the bending of the lattice members

and all the peaks in the cost function are associated with longitudinal extension and

compression of the structural members. The interesting result of this comparison is

that, both models have similar mean values for the cost function when it is averaged

over the frequency range 0 - 1 kHz. To complement this information, the mode count in

the frequency range 0 - 1 kHz is plotted in figure 2.10. The number of natural modes in

this frequency range was also obtained by the software ANSYS using a method called

subspace iteration [71]. Figure 2.11 shows the first six mode shapes obtained by finite

element method with only longitudinal motion.

2.8.3 Continuum modelling numerical results

Table 2.3 shows the natural frequencies of a equivalent beam model calculated using

the expression given in table 2.2 for the first 10 natural modes. These results are
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compared to the natural frequencies obtained by the finite element method using the

ratio ωC/ωFEM in figure 2.12, where ωC is the natural frequency of the continuous model

and ωFEM is the natural frequency of the equivalent mode shape calculated by the finite

element method. The results show reasonable agreement between the two methods.

2.9 Experimental work

Experimental tests were conducted in the lattice structure described in the introduction

in order to validate the mathematical model obtained by the dynamic stiffness method.

The experimental rig consists of a lattice structure of 93 aluminium members and 33

aluminium spherical joints of mass 0.022 kg. This structure was already available

in the laboratory of the Dynamics Group of the Institute of Sound and Vibration

Research and it is the same used in the work by M. Moshrefi-Torbati, [25]. A picture

of the experimental rig is shown in figure 2.13. To simulate the free-free boundary

condition, the structure was suspended using elastic wires. The suspension apparatus

with the structure has natural frequencies below 4 Hz. The system was excited with an

electromagnetic shaker mounted on foam rubber. The system was excited with white

noise in a frequency band of 0 - 1 kHz. Acceleration at joints 4, 31, 32 and 33 were

measured using PCB-Model 352A24 ICP accelerometers (with nominal sensitivity of

10−3 V/m/s2). The mass of the accelerometers is about 0.8 grams which has not been

taken into account in the modelling of the system. The input force was measured using

a PCB-Model 208C01 ICP force sensor (with nominal sensitivity about 100 mV/N).

Using a frequency analyser model HP35650, the transducers signals were recorded and

acceleration FRFs (frequency response functions) were calculated with a resolution

of 0.25 Hz. Hanning windows were used in the calculation of the FRFs. The FRFs

were smoothed by averaging the data 10 times using no time overlapping. A diagram

showing the experimental setup is shown in figure 2.14

2.10 Experimental results

By integrating acceleration frequency response functions obtained in the experimental

work, it was possible to calculate the transfer mobilities for joints 31, 32 and 33 in
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directions x, y and z due to a primary force of 1 N applied at joint 4 in the y direction.

The magnitudes of these transfer functions, the phase and the measurement coherence

are given in appendix E. Using these transfer mobilities, an experimental cost function

was obtained and is plotted, together with the theoretical results obtained by the dy-

namic stiffness method using the complete beam model, in figure 2.15. It can be seen

that there is good agreement between the theoretical and experimental results. Simi-

larly the power input into the structure has been calculated by the dynamic stiffness

method and from the experimental data. The power due to the harmonic force of 1 N

applied at joint 4 in the y direction is calculated by

Pin

|f4,y|2
=

Re {v4,y}
2

(2.63)

where, v4,y is the velocity of joint 4 in the y direction. The comparison between the

theoretical and experimental results are given in figure 2.16, again showing a good

agreement between the theoretical and experimental results. The dip in the measured

power at about 450 HZ is thought to be due to error in the calculation of the real part

of v4,y, which is largely reactive at these frequencies.

2.11 Concluding remarks

In this chapter, various methods of modelling lattice structures have been presented,

which includes the dynamic stiffness, finite element and continuum modelling methods.

Different dynamic behaviour can be obtained using different models for the structural

elements. These different models are used in chapter 3 to predict the mechanisms of

power flow and energy distribution in a lattice structure with different dynamic regimes.

Experimental results proved the accuracy of the model obtained by the dynamic stiff-

ness method using a complete model for the structural members. This model is used

in chapters 4 and 5 in order to predict the results of active control.
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End 0 End 1 Power Dissipated

Total
6∑

k=1

pk

12∑
k=7

pk −(P(0) + P(1))

Longitudinal p1 p7 −(p1 + p7)
Torsional p4 p10 −(p4 + p10)
Bending (p2 + p3 + p5 + p6) (p8 + p9 + p11 + p12) −(Pbend(0) + Pbend(1))

Table 2.1: Power Flow in ends 0 and 1; Power dissipated

Equivalent Stiffness Mass Distribution Natural frequency

Bending
El2BS

2(1 + Cs/m2)
3ρS

(
2 +

√
2
) lB

(12 + 6
√

2)1/2

(
E

ρ

)1/2 mk2
i

(m2 + Cs)
1/2

Longitudinal 3ESL 3ρS
(
2 +

√
2
) iπ

(2 +
√

2)1/2mlL

(
E

ρ

)1/2

Torsion
El2BS

2 + 2
√

2
l2BρS

(
3 +

√
2
)

2
iπ

2(5 + 4
√

2)1/2mlL

(
E

ρ

)1/2

Table 2.2: Equivalent mass, equivalent stiffness and natural frequencies for a equivalent
continuous system

Mode shape Natural frequency [Hz]

1st Bending - y . . . . . . . . . . . . . . . . . . 83.5
1st Bending - z . . . . . . . . . . . . . . . . . . 83.5
1st Torsion . . . . . . . . . . . . . . . . . . 86.3
2nd Torsion . . . . . . . . . . . . . . . . . 172.6
2nd Bending - y . . . . . . . . . . . . . . . . . 199.2
2nd Bending - z . . . . . . . . . . . . . . . . . 199.2
3rd Torsion . . . . . . . . . . . . . . . . . 258.8
1st Longitudinal . . . . . . . . . . . . . . . . . 304.8
3rd Bending - y . . . . . . . . . . . . . . . . . 327.7
3rd Bending - z . . . . . . . . . . . . . . . . . 327.7

Table 2.3: Natural frequencies of a continuum model
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Figure 2.1: Local coordinate system for a beam, with ends 0 and 1 and respective degrees of
freedom numbering scheme
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Figure 2.2: Force numbering scheme for a beam in local coordinates with ends 0 and 1.
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Equivalent Properties

Figure 2.3: Equivalent continuum modelling for a satellite boom
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Figure 2.4: The views of bay of the lattice and the bay cross section.
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Figure 2.6: Magnitude of the mobilities at joints 31, 32 and 33 in directions x, y and z due to
harmonic force of 1 N applied at joint 4 in y direction - dB ref. 1 m/Ns. (Numerical results)
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Figure 2.7: Cost function calculated using the dynamic stiffness method from the sum of
the squared magnitude of velocities at joints 31, 32 and 33 in direction x, y, and z due to
harmonic force of 1 N applied at joint 4, y direction - dB ref. 1 (m2/Ns2). (Numerical result).
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Figure 2.8: Examples of the mode shapes for the lattice structure using a complete beam
model obtained by finite element method.
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Figure 2.9: Comparison between the cost functions calculated using the complete beam
model (thin line) and the finite element method considering only longitudinal motion of
the structural members (thick line) due to harmonic excitation of 1 N applied in joint 4, y
direction - dB ref. 1 m2/Ns2
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Figure 2.10: Mode count for the lattice structure in the frequency range 0 - 1 kHz. The thick
line is for the lattice structure considering the complete member model (bending, longitudinal
and torsional motion) and the dashed line if for the lattice structure considering only the
longitudinal motion of the structural members. The results were obtained using the finite
element software ANSYS.
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Figure 2.11: Mode shapes and natural frequencies of the lattice structures obtained by the
finite element method and considering only longitudinal deformation of the structure mem-
bers.
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Figure 2.13: Lattice structure experimental rig. Structure is suspended by elastic wires with
electromagnetic shaker attached to joint 4.
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Figure 2.14: Scheme of the Frequency Response Measurement Experiment
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Chapter Three

Dynamic analysis of lattice structures

3.1 Introduction

This chapter discusses the dynamic analysis of lattice structures where the interaction

of short/long wavelength modes is considered. The aim of this chapter is to develop

expressions relating the first short wavelength (SW) natural frequency with a long

wavelength (LW) natural frequency. With these expressions it is possible to deter-

mine whether SWMs are present or not in a given frequency region. These expressions

are used to identify the geometric parameters of the structure which control the fre-

quency range were SW and LW modes occur. By changing some of these parameters,

power flow and mechanisms of energy dissipation are analysed by numerical simula-

tions. These results are used in chapters 4 and 5, in order to help determine the

physical mechanisms of the different active control approaches applied to the structure

considered in the thesis.

3.2 Dynamics of lattice structures

As discussed in chapters 1 and 2, the type of short wavelength modes considered in this

thesis consists of bending of the structural members, while the long wavelength modes

are assumed to occur due to longitudinal extension/compression of the members. The

short wavelength behaviour of lattice structures has long attracted the attention of

researchers, specifically in the area of mode localization. A significant contribution,

explaining the localization phenomena in the area of solid-state physics, was published

by Anderson in 1958 [31] and for this reason it is known as the Anderson Localization

phenomenon. (The work of Anderson and Mott on localization and its application to

solid-state physics was cited in their Nobel Prize of 1977 [90]). Later, mode localization

has been studied in the field of structural dynamics and most of the literature in this

area can be found in the survey paper of Ibrahim [91]. In structural dynamics, mode

localization can either be beneficial, if for instance, short wavelength modes work like

passive vibration absorbers, or they may not be beneficial, in terms of component
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fatigue, since when localization occurs, stresses remain localized in regions near to the

disturbance. This problem of localised fatigue has been discussed for the case of rotor

blades in references [92, 93]. Undesirable consequences can also be expected in the

performance and stability of active control systems. This topic is discussed in chapters

4 and 5 of this thesis.

Mode localization occurs in structures made up of weakly coupled components, where

their equation of motion have closely spaced eigenvalues (similar natural frequencies),

as in the case of nearly periodic lattice structures. Such systems have high sensitivity

to small irregularities. The effect of disorder on mode localization is considered in

references [33, 94, 95].

In most of the references concerning the topic of mode localization, the example of a

coupled pendula system is used to explain the phenomenon; such a system is shown

in figure 3.2. This system has N identical pendula all weakly coupled with their

neighbours, with all the coupling springs being identical. Removing the coupling from

all members, would results in all the pendula vibrating at the same natural frequency

independently (since all pendula are identical). When a small coupling between each

pendulum is allowed, the natural frequency of the pendula will be split in a cluster

of frequencies all near to the resonance frequency of the pendula [96]. The vibration

modes associated with these natural frequencies are given in reference [97], where it

is stated that these modes are extended (all pendula move with approximately equal

amplitudes) throughout the whole structure. If some changes are made in one of the

pendula, such as changing the mass so that it has slightly different natural frequency,

the mode will change. In this case, the mode is now localized around the individual

pendulum and the coupling between pendula is not strong enough to produce extended

modes in which all pendula contribute with more or less similar amplitudes. In this

thesis, perturbation in the properties of the structural members are not considered,

although understanding mode localization is important to explain some of the short

wavelength behaviour observed in the structure.

To understand the influence of short and long wavelength behaviour, a ratio relating

the first short wavelength natural frequency to a long wavelength natural frequency

is defined. This involves the expression for the natural frequencies of Euler-Bernoulli
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beams and an expression representing the approximate natural frequency of an equiv-

alent continuum model. Using this ratio, simple expressions are derived using the

lattice properties and geometric parameters to determine if short wavelength natural

frequencies occur before or after a certain long wavelength natural frequency. This

ratio is important as it can indicate if a model of a particular lattice structure should

take into account bending of the structural members. If short wavelength modes oc-

cur only at high frequencies, a more simplified model can be used that considers only

longitudinal motion of the members. This ratio can also be used to predict whether

certain active control strategies can be implemented in a frequency range, as discussed

in chapters 4 and 5. In the second part of this chapter the characteristics of power flow

and energy dissipation are discussed, considering the different dynamic regimes of the

lattice structure. This type of analysis has been considered in the work described in

reference [70] where the influence of a passive vibration absorber is used to attenuate

vibration in a grill-like structure. In reference [76] power was also used to investigate

energy dissipation for different geometric configurations of a two-dimensional lattice

structure.

3.3 The dynamics of short wavelength modes

The short wavelength modes (SWM) considered in this thesis involves only the bending

of the structural members. As members are assumed to be long and thin, Euler-

Bernoulli beam theory is used to obtain the expressions for the natural frequencies of

the members. For any of the structural members, the bending natural frequency is

given by [66]

ωi =

(
EI

ρS

)1/2
k2

i l
2

l2
(3.1)

where, EI is the bending stiffness, ρS is the mass per unit length, l is the length

of the member, k is the wavenumber and i is the mode number. In text books, the

values for the wavenumber are given in the form kil, because for the i-th mode, kil is

a constant value for any length of beam. From equation 3.1 it can be seen that the

natural frequency of the members is inversely proportinal to the square of the member
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length. This means that longer structural members have lower fundamental natural

frequency (assuming members with identical cross sections and material properties).

For the three categories of structural members in the lattice structure considered in

this thesis (as identified in figure 1.5) equation 3.1 is written as

ωi,L =

(
ELIL
ρLSL

)1/2
k2

i l
2
L

l2L
, for longitudinal members (3.2)

ωi,B =

(
EBIB
ρBSB

)1/2
k2

i l
2
B

l2B
, for batten members (3.3)

ωi,D =

(
EDID
ρDSD

)1/2
k2

i l
2
D

l2D
, for diagonal members (3.4)

where, the subscripts L, B and D refer to the longitudinal, batten and diagonal mem-

bers, respectively. If the properties of the members and cross sectional areas are iden-

tical, then

EI = ELIL = EBIB = EDID (3.5)

ρS = ρLSL = ρBSB = ρDSD (3.6)

using also the relationship lL = lB = LD/
√

2, it is possible to relate the natural

frequencies of the structural members as

ωi,L =
(kilL)2

(kilB)2ωi,B = 2
(kilL)2

(kilD)2ωi,D (3.7)

In equation 3.7, for any of the types of structural members, the product (wavenumber

× length) is constant for the i-th mode. For the most common boundary conditions;

clamped, free, pinned and sliding, the value of kil can be found in text books, such as

[66, 63]. For other boundary conditions, the value of kil is not known. If the boundary

conditions of all the members are the same (as in the case of pin jointed structures) it

would be possible to simplify the relationship of equation 3.7 to

ωi,L ≈ ωi,B ≈ 2ωi,D (3.8)
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if it is assumed that members have the same geometric and material properties, and

lL = lB = lD/
√

2. This shows that the system has two categories of natural frequencies.

One associated with the longitudinal and batten members and other associated with the

diagonal members. Because the boundary conditions of the members are not identical,

these categories are actually groups of natural frequencies occurring in a small frequency

range (clusters). These clusters of natural frequencies are similar to the behaviour

described in the coupled pendula example. However, in this analysis, variation of the

members’ properties is not considered, but some mode localization behaviour can occur

due to the different boundary conditions of the structural members. In the pendula

example described previously, the system is considered to be infinite so that the ends of

the system have no influence on the dynamic response, while the structure considered

in this thesis is of finite extension. The members which are at the ends of the structure

are more influenced by these conditions when compared to the members in the middle

of the structure. This leads to a similar, but not identical form of mode localization

of those in the pendula example. A short wavelength mode that is localized in the

structure can be seen in figure 3.3, where larger displacements are concentrated in the

bays at the ends of the structure; while in the figure 3.4 the vibration behaviour is

similar in many members in the structure.

3.3.1 Numerical analysis of SWM

Using the nominal properties of the lattice structure considered in this thesis (shown

below), numerical simulations were performed in order to identify the short wavelength

behaviour of the structure.

• EI = 5.5044 Nm2

• ρS = 0.0850 kg/m

• lL = lB = LD/
√

2 (lL = 0.45 m)

Substituting these values into equation 3.1 and using the values of k1l = π for pinned-

pinned (p-p) beams and k1l = 4.73004 for clamped-clamped (c-c) beams [66], the

diagonal members have p-p and c-c natural frequencies of 31.2 Hz and 70.7 Hz, respec-
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tively. For the other members (longitudinal and batten) these frequencies are 62.4 Hz

and 141.4 Hz, respectively. The values of natural frequencies for p-p and c-c boundary

conditions, roughly indicate frequency regions where the lattice structure have several

and indistinct group of member modes (clusters). These groups of modes repeat for

each natural frequency of the structural members (every time that the length of the

structural member is a multiple of the product kil). Some of the natural frequencies

for the pinned-pinned and clamped-clamped boundary conditions were calculated us-

ing the system nominal properties and are shown in table 3.1 for the (longitudinal and

batten) members and for the diagonal members where the natural frequency values are

given in Hertz. Using some of the natural frequencies of table 3.1, frequency regions

were plotted in figure 3.1 using rectangles identified as D or L, respectively diagonal

members and longitudinal/batten members. The left hand side of these rectangles

represents the p-p natural frequencies of the members. The right hand side of the

rectangles represent the c-c natural frequencies of the members. For example, the rect-

angle D1, has left hand side at frequency 31.2 Hz and right hand side at frequency 70.7

Hz, which corresponds to the first fundamental natural frequencies of a p-p and c-c

diagonal member, respectively. Rectangle L1, has left hand side at frequency 62.4 Hz

and right hand side at frequency 141.5 Hz, which corresponds to the first fundamental

natural frequencies of a p-p and c-c longitudinal (or batten) member. The rectan-

gle number D2 represent the second fundamental natural frequency for the diagonal

members, and so on. In the same figure, the natural frequencies of the structure were

calculated by the finite element method, using the commercial software ANSYS. In this

analysis members were divided in 20 elements each. The finite element used was the

three-dimensional elastic beam, that has six degrees of freedom per each node. The

natural frequencies are plotted in the frequency range 0 - 1 kHz and are represented by

the thin vertical lines. It can be seen that the rectangles (1, . . ., 8) roughly bound the

various clusters of natural frequencies. For example, rectangle 1, bounds all the natu-

ral frequencies associated to the first bending mode of the diagonal members. These

results have been used to determine an approximate expression for the first SW natural

frequency. Assuming that this first natural frequency is bounded by first p-p and c-c

natural frequencies of a diagonal member, it is reasonable to use an average for these
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two boundary conditions given by

ω1 =
ωp−p + ωc−c

2
=

(
EI

ρS

)1/2 k2
p−p + k2

c−c

2
(3.9)

where, equation 3.9 was obtained empirically. In the expression for the approximate

value for the first short wavelength natural frequency for the structure considered in

this thesis is 51 Hz which is not much different from the value calculated from a

model obtained by dynamic stiffness method (48.3 Hz) and the value obtained by the

experimental test (48 Hz) given in chapter 2. The average product wavenumber ×

length can then be expressed for the first mode as

(kl)2

l2
=

(kl)2
p−p + (kl)2

c−c

2l2
≈ 16.12

l2
(3.10)

where (kl)p−p = π and (kl)c−c = 4.73004. The value (kl)2 = 16.12 is used in other

sections of this chapter.

3.4 The dynamics of long wavelength modes

The results of figure 3.1 and also the plot of mode count as a function of frequency in fig-

ure 2.10 (chapter 2) show that the lattice structure has several short wavelength modes

in the frequency range 0 - 1 kHz (∼ 700 modes). Identifying a long wavelength mode

in these circumstances can be quite difficult. This is because it is necessary to perform

a numerical modal analysis and search among many short wavelength modes. If short

wavelength modes occur at frequencies closed to the frequencies of a long wavelength

mode, there is a high possibility that the dynamic interaction between SWM/LWM

will result in a hybrid mode, as shown in 3.5 (where this mode is a combination of

a long wavelength torsional mode with bending of the structural members). Alterna-

tively a LWM may vanish due to the destructive interference caused by the SWM. For

these reasons, there will only be a pure LWM if SWMs do not interact with them at

frequencies close to the LWM natural frequency. The approach used to calculate these

“hypothetical” LW natural frequencies, is to use the equivalent continuum model de-

scribed in chapter 2 (the word hypothetical is used because it is not certain that there

exists pure LW modes). The natural frequencies for the equivalent continuum model
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for the lattice structure are given in the table 2.2 of chapter 2 and repeated here for

convenience

(ωi)C =
lB

(12 + 6
√

2)1/2(1 + Cs/m2)1/2

(
E

ρ

)1/2

(ki)
2
C , for bending motion (3.11)

(ωi)C =
iπ

mlL(2 +
√

2)1/2

(
E

ρ

)1/2

, for longitudinal motion (3.12)

(ωi)C =
iπ

2mlL(5 + 4
√

2)1/2

(
E

ρ

)1/2

, for torsional motion (3.13)

Using equations 3.11-3.13 the long wavelength natural frequencies are plotted in figure

3.6. In this figure the longer and thicker vertical lines represent the long wavelength

natural frequencies and the thin and short vertical lines are the natural frequencies

of the lattice structure calculated using the finite element method as shown in figure

3.1. It can be seen in figure 3.6 shows that most of the LWMs are overlapped by the

SWMs, what can result in destructive interference of the LWM as discussed above. An

important result from figure 3.6 is that SWMs occur at lower frequencies than the first

LWM for this lattice structure.

3.5 Relating short and long wavelength modes

The objective of this section is to determine the conditions for which SW natural

frequencies occur before or after a certain i-th LW natural frequency. The i-th LW

natural frequency can be a bending, torsion or a longitudinal LWM. Consider the ratio

βi of two natural frequencies, the first SW natural frequency (ω1)D (which is assumed

to occur in the diagonal members, hence the subscript D) and the i-th LW natural

frequency (ωi)C given by

βi =
(ω1)D

(ωi)C

(3.14)

The ratio βi is illustrated in figure 3.7, where it can be seen for values of βi > 1, the

first SWM occurs at frequencies greater than that of the i-th LWM, for values of βi = 1,
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the first SWM occurs at the same frequency as the LWM and for values of βi < 1, the

first SWM occurs at frequencies smaller than the LWM. Using the expression for the

natural frequency of the SWM for a diagonal member given in equation 3.4

ωD =

(
EI

ρS

)1/2
((k1)DlD)2

2l2L
(3.15)

where, (k1)D is the wavenumber for the fundamental natural frequency of a diagonal

member. Moreover, lL = lB = lD/
√

2 has been assumed to give the factor 2 in the

denominator of equation 3.15. The term (ωi)C can be either one of the expressions of

equations 3.11-3.13. The ratio βi is investigated for these expressions in the following

sections.

3.5.1 The ratio for the i-th bending LW natural frequency

Combining equations 3.11, 3.14 and 3.15 the ratio βi for the i-th LW bending mode is

determined to be

βi =

[(
EI

ρS

)1/2

(k1)
2
D

] [
(12 + 6

√
2)1/2(1 + Cs/m

2)1/2

lB(ki)2
C

( ρ
E

)1/2
]

(3.16)

where the terms inside the left hand bracket correspond to (ω1)D and the terms in

the right hand bracket corresponds to 1/(ωi)C . As a first step in the simplification of

equation 3.16 it is possible to cancel out the material properties E and ρ to give

βi =

(
I

S

)1/2
(12 + 6

√
2)1/2(1 + Cs/m

2)1/2

lB

(k1)
2
D

(ki)2
C

(3.17)

The ratio of wavenumber on the far right of equation 3.17 can be re-written as

(k1)
2
D

(ki)2
C

=
((k1)DlD)2

2l2L

(mlL)2

((ki)CmlL)2 =
((k1)DlD)2

((ki)CmlL)2

m2

2
(3.18)

where the relationship lD =
√

2lL is used and ((k1)DlD) is not known due to the

boundary condition of the structural members. For simplicity, the value of ((k1)DlD)

used is that found from the average between the p-p and c-c values for the first natural

frequency discussed previously in this chapter. This value is given by ((k1)DlD)2 ≈

16.12. The term (1 + Cs/m
2)1/2 is also modified to
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(
1 +

Cs

m2

)1/2

=
(m2 + Cs)

1/2

m
(3.19)

Equation 3.17 can then be written as

βi =
m

lB

(
I

S

)1/2
(
12 + 6

√
2
)1/2

2

(
m2 + Cs

)1/2

(
(k1)DlD

)2

((ki)CmlL)2 (3.20)

Equation 3.20 can be divided into three terms, the first term m
lB

(
I
S

)1/2
consists of

the dimensional properties of the structure; the term (12 + 6
√

2)1/2((k1)DlD)2/2, is

constant and also introduces some numerical uncertainties in the value of βi, due to

the estimation of the term ((k1)DlD). The last term (m2 +Cs)
1/2/((ki)CmlL)2 depends

upon the mode shape number i. For the free-free boundary condition of the lattice

structure, the values of ((ki)CmlL) for the i-th mode are given in reference [66] as

i 1 2 3 4 5 6, 7, . . .

(ki)CmlL 4.73004 7.85320 10.9956 14.1372 17.2788 (2i+ 1)π/2

The shear correction factor Cs also depends upon the mode shape, and for this structure

it is given by [88]

Cs = i2π2

(
1 + 2

√
2
)

3
(3.21)

The interest now is to determine the condition for SWMs to occur before the i-th

LWM. This can be done by setting βi > 1, so using equation 3.20 this inequality can

be written as

(
I

S

)1/2
1

lB
>

2

m(m2 + Cs)1/2(12 + 6
√

2)1/2

((ki)CmlL)2

((k1)DlD)2
(3.22)

The term (I/S)1/2 relates the second moment of area with the cross section area of the

members. For solid circular cross sections (I/S)1/2 = d/4, where d is the diameter of

the cross section. For hollow circular cross sections, (I/S)1/2 =
√
d2

2 + d2
1/4, where d2

and d1 are the external and internal cross section diameters, respectively. It is then

possible to write equation 3.22 as
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∆

lB
>

8

m(m2 + Cs)1/2(12 + 6
√

2)1/2

((ki)CmlL)2

(kDlD)2
(3.23)

where, ∆ = d for members with solid cross sections and ∆ =
√
d2

2 + d2
1 for members

with hollow cross sections. If equation 3.23 is now inverted to give

lB
∆
<
m(m2 + Cs)

1/2(12 + 6
√

2)1/2

8

((k1)DlD)2

((ki)CmlL)2
(3.24)

where the term lB/∆ can be defined as the slenderness ratio. If equation 3.24 is

numerically simplified, using the values of ((ki)CmlL) given in reference [66] for the

first four mode shapes, and making ((k1)DlD)2 = 16.12 , the slenderness ratio for the

first four long wavelength bending natural frequencies are given in table 3.2. The values

of the slenderness ratio are plotted in figure 3.8 as a function of the number of bays in

the lattice structure for the first four long wavelength bending modes of the structure.

3.5.2 The ratio for the i-th longitudinal LW natural frequency

In a similar way to the expressions developed in the previous section, the ratio βi is

calculated for the i-th longitudinal LWM. Combining equations 3.12, 3.14 and 3.15 the

ratio βi is defined for the i-th LW longitudinal mode as

βi =

[(
EI

ρS

)1/2

k2
D

] [
mlL(2 +

√
2)1/2

iπ

( ρ
E

)1/2
]

(3.25)

where, the terms in the left brackets correspond to the short wavelength natural fre-

quency (ω1)D of a diagonal member. By cancelling out the material properties and

setting (k1)
2
D = ((k1)DlD)2/2l2B, where ((k1)DlD) is once again the estimated value

given in the previous section. Equation 3.25 is then simplified to

βi =

(
I

S

)1/2
mlL(2 +

√
2)1/2

2iπ

((k1)DlD)2

2l2B
(3.26)

Equation 3.26 can also be divided in three distinct terms, as

βi =

[(
I

S

)1/2
m

lB

] [
(2 +

√
2)1/2((k1)DlD)2

2π

]
1

i
(3.27)
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where the term in the left hand bracket consists of geometrical parameters, the middle

term inside the brackets is a constant value and may introduce errors in the expression

due to the estimation of ((k1)DlD). The last term is the inverse of the mode number.

By assuming values of βi > 1, equation 3.27 is written as

(
I

S

)1/2
1

lB
>

2iπ

m(2 +
√

2)1/2((k1)DlD)2
(3.28)

and equation 3.28 can be inverted to give the expression in terms of the slenderness

ratio lB/∆

lB
∆
<
m(2 +

√
2)1/2((k1)DlD)2

8iπ
(3.29)

where, ∆ is defined previously. If 3.29 is numerically simplified, the slenderness ratio

for the first four long wavelength bending natural frequencies are given in table 3.4.

These values for the slenderness ratio are plotted in the figure 3.9 as a function of the

number of bays in the lattice structure for the first four long wavelength longitudinal

modes of the structure. The dashed line corresponds to the Euler-Bernoulli beam

theory limit for the first bending mode shape as discussed in reference [63].

3.5.3 The ratio for the i-th torsional LW natural frequency

The ratio βi can be found in a similar way to the expressions in the last section for

the longitudinal LWM. Comparing the two expressions for the long wavelength natural

frequency (ωi)C for longitudinal and torsional motion (equations 3.12 and 3.13), the

only differences are the terms (2+
√

2)1/2 and 2(5+4
√

2)1/2. Thus, the ratio βi for the

i-th torsional LW natural frequency is given by

βi =

[(
I

S

)1/2
m

lL

] [
2(5 + 4

√
2)1/2((k1)DlD)2

2π

]
1

i
(3.30)

and the slenderness ratio for the long wavelength torsional motion of the system is

given by

lB
∆
<
m(5 + 4

√
2)1/2((k1)DlD)2

4iπ
(3.31)
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If 3.31 is numerically simplified, the slenderness ratio for the first four long wavelength

bending natural frequencies are given in table 3.3. These values for the slenderness ratio

are plotted in figure 3.10 as a function of the number of bays in the lattice structure.

The slenderness ratio is plotted for the first four long wavelength longitudinal modes

of the structure. The dashed line represents the Euler-Bernoulli beam theory limit for

the first beam mode.

Figure 3.11 shows the slenderness ratio for the first LWMs for bending, torsion and

longitudinal motion of the lattice structure as a function of the number of bays in the

structure. The nominal slenderness ratio for the structural members is also identified.

Clearly for the 10 bay structure considered in this thesis, the right hand side of equation

3.24 is less than lB/∆ for all i, so that βi is less than one. This result is also in

accordance to the results of figure 3.6 where the SWM occur first then the LWM.

3.6 Factors controlling the SW and LWMs

In the expressions for the ratio βi as in equation 3.20, it can be seen that the ratio

βi depends upon two terms; the mode shape number of the LWM and the geometric

properties of the structure. These geometric properties are the length of the batten

(or longitudinal members), the variable defining the cross sectional area ∆, and the

number of bays, m. It is clear that modifying the number of bays of the structure will

have a large influence on the LW natural frequencies as they change with the inverse

of the number of bays in the structure. Changing the number of bays in the structure

influences the SW natural frequencies slightly, because the boundary conditions of

the members are slightly modified. This has been discussed in the introduction to

this chapter, where the ends of the structure may have an effect on the boundary

conditions of the structural members. Changing the parameter ∆, which is related to

the cross section of the members, influences only the SW natural frequencies. This can

be seen in equations 3.11-3.13, where these expressions have no dependency on the cross

section of the members. The other parameter influencing the slenderness ratio is the

length of the members. By changing the length of batten members, for instance, both

SWM and LWM can be affected (note, the relationship lL = lB = lD/
√

2 is assumed).

Because in most cases, the length of the structure is a fixed parameter, modifying the
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number of bays in the structure is only possible by changing the length of the structural

members. The parameter ∆, however, can be used for tailoring the spectrum of SWM.

It is usually possible to change the stiffness to weight ratio by changing a solid circular

cross section to a hollow circular cross section. The parameter ∆ changes from d to√
d2

2 + d2
1. The practical result of this modification is the possibility to increase the

bending stiffness of the members without addition of weight, if the area of the solid and

hollow circular cross sections remain equal (a change in the volume of the members is,

however, inevitable).

To demonstrate the influence of these parameters on the dynamics of the structure, nu-

merical simulation are presented. In figure 3.12, the natural frequencies of the structure

are represented by the dots in the frequency range 0 - 1 kHz. These natural frequen-

cies were calculated by the finite element method using the three-dimensional beam

element available in the commercial software ANSYS dividing the structural members

into 20 element each. These natural frequencies were calculated for different values of

the non-dimensional ratio (I/l2BS) and are shown as normalized values by the nominal

ratio (I/l2BS) = 1.2445 × 10−5. It can be seen that as the ratio (I/l2BS) increases,

some of the dots representing the natural frequencies are shifted in a fashion propor-

tional to the square root of this ratio (as β ∝ (I/l2BS)1/2), in this case, mainly the

SW natural frequencies are changed. The LW natural frequencies, however, remain

nearly unchanged. Some differences in the LW natural frequencies are expected when

SWM occur at frequencies close to the LWMs. The shifting effect of the SWM can

also influence the structural responses to disturbance forces. This is demonstrated for

the cost function considered in this work, for a disturbance force applied at joint 4,

in the y direction. The sum of squared linear velocities at joints 31, 32 and 33 was

calculated for different values of the ratio (I/l2BS) using the dynamic stiffness method.

The sum of these cost functions over the frequency range 20 Hz - 1 kHz (with 1 Hz

frequency resolution) are plotted in figure 3.13 as a function of the ratio (I/l2BS) where

the values are given in dB. As can be seen in the results of figure 3.13, the sum of the

cost function varies by up to 3.5 dB, for the values of (I/l2BS)/(I/l2BS)nominal varying

between 1 and 25. The conclusion is that although the structural response can be quite

different when SWM are shifted in frequency, the overall level of the structure response
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for this frequency range (20 Hz - 1 kHz) does not change by very much.

3.7 The analysis of power in the lattice structure

In this section the mechanisms of energy dissipation and power flow in the structural

members are considered. The results are used in the following chapters to help de-

termine the physical mechanisms of the two forms of active control considered in this

thesis; feedforward and feedback control. This is done using the expression for power

flow given in appendix D, and the method described in the chapter 2, where the power

at any position in the structure is calculated by

p(ω) =
1

2
Re {F (ω)V ∗(ω)} (3.32)

where p(ω) is the power at circular frequency ω and F and V are the internal force and

the velocity. The symbol ()∗ denotes the complex conjugate. Dropping the angular

frequency symbol ω for simplicity, the power flowing at ends 0 and 1 of the n-th

structural member is given in terms of vectors by

pn(0) =
1

2
Re {fn(0)× v∗n(0)} ,pn(1) =

1

2
Re {fn(1)× v∗n(1)} (3.33)

where the symbol ×means the multiplication of element by element of the vectors f and

v. The power dissipated in the n-th member is found by the principle of conservation

of energy as

pn(diss) = −(pn(0) + pn(1)) (3.34)

where for a passive member, the vector pn(diss) has only negative elements. In an

expanded form it can be written as

pT
n (diss) =

[
plong(diss) pbend,y(diss) pbend,z(diss) ptors(diss) pbend,θy(diss) pbend,θz(diss)

]
(3.35)

where plong(diss) is the power dissipated by the longitudinal motion of the member,

ptors(diss) is the power dissipated by the torsional motion of the members and pbend(diss)
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is the power dissipated by bending motion of the members which can occur in two planes

(due to the product of shear force × linear velocity and bending moment × angular

velocity). If these elements are summed, the result is the total power dissipated in

the n-th structural member pn(diss). If the dissipated power in all structural members

are summed, by the principle of conservation of energy, the result should be equal (in

magnitude) to the power input into the system as

p(in) =
∑

n

|pn(diss)| (3.36)

Using the model obtained by the dynamic stiffness method described in the chapter 2,

and by applying a harmonic force with magnitude 1 N at joint 4, in the y direction, the

power input and the total power dissipated calculated by equation 3.36 are plotted in

figure 3.14 in the frequency range 20 Hz - 1 kHz. The same results are also plotted in

the figure 3.15 given in dB (where the power dissipated has been plotted as −p(diss) to

fit into the dB scale). The results in these two figures show that the two methods for

calculating the power dissipation in the members is consistent, as the results agree well.

Considering also the results of figure 2.16, where the input power calculated numerically

by the dynamic stiffness method has been compared with experimental results, leads to

the conclusion that this methodology can predict the mechanisms of energy dissipation

and power flow in the structure with a reasonably degree of confidence. Using equation

3.35, it is also possible to categorise the mechanisms of power dissipation into three

types; the power dissipated by longitudinal, torsional and bending motion. The first

two are the first and the fourth elements of the vector in equation 3.35, while the power

dissipated by bending is given by

pbend(diss) = pbend,y(diss) + pbend,z(diss) + pbend,θy(diss) + pbend,θz(diss) (3.37)

If these three categories are normalized by the total power dissipated, it is possible

to calculate the contribution of each mechanism in the frequency range considered

previously. These results are shown in figure 3.16. In this figure it is possible to see that

the principal mechanism of energy dissipation occurs in the bending of the members

at most frequencies apart from around 500 Hz. This result is related to the prediction
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of a large number of SWM discussed in the previous section. Some contribution to the

energy dissipation also occurs due the longitudinal motion of the structural members.

This mechanism becomes more predominant when a long wavelength mode occurs and

this can be seen in some frequencies regions of this figure as for example around 70 Hz

and 440 Hz. These results can be compared with the LW and SW natural frequencies

in figure 3.6 which shows that longitudinal power dissipation is more dominant in the

frequency gaps between the clusters of SWMs. Because of the way in which the system

and members are excited, the contribution to the dissipation of energy due to the

torsion of members can be neglected. The average value (summing the values in the

frequency range for each dissipation mechanism and dividing by the total dissipated

power) in this frequency range for these mechanisms are

• Bending motion - 80.71 %

• Longitudinal motion - 18.64 %

• Torsional motion - 0.65 %

The power dissipated by these mechanisms is also shown in figure 3.17 where the

absolute values have been used to fit the dB scale. These results complement the

previous discussion. The contribution of each member to the frequency-averaged total

power dissipated in the structure is shown in figure 3.18 where the level in dB for each

member is represented by its colour. It is clear in this figure that members near the

disturbance forces contribute more to the dissipation of energy in the system. Some

batten members in the middle of the structure do not contribute much because they

are poorly exited by the disturbance force as shown in this figure. Figure 3.19 shows

a similar result to that of figure 3.18, but in this case, only the bending contribution

for the energy dissipation has been considered while figure 3.20 shows the longitudinal

motion contribution for the dissipation of energy for each member. There are smaller

differences between the levels of contribution for this mechanism of energy dissipation.

A relatively small amount of power is dissipated by torsional motion and the members

that contribute more are the ones in the end of the structure as shown in figure 3.21.
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3.7.1 The influence of SWM in the energy dissipation mechanism

Figure 3.22 shows the sum of the input power for a harmonic force of 1 N applied

at joint 4, in the y direction over the frequency range 20 Hz - 1 kHz (using frequency

resolution of 1Hz), is shown as a function of the ratio (I/l2BS). These results are similar

to figure 3.13. For the values of this ratio going from 1 to 25 times the nominal ratio

(I/l2BS)nominal, the input power rises and falls, but has a general trend of decreasing its

value as the ratio increases. The input power varies in a range of approximately 1.2

dB. This variation may be explained due to the interaction of short/long wavelength

modes are also for changes of the nodal points for a certain mode shape. (If a force

is applied close to a nodal point, the product between force and velocity is small, and

consequently the power input at that position). The conclusion is that the input power

does not change much when this ratio changes. The results of figure 3.23, however,

do show that the mechanisms of power dissipation are influenced by (I/l2BS). In this

figure, power dissipated by bending, longitudinal and torsional motion of the members

are shown as fraction of the total power dissipated in the system as a function of

(I/l2BS).

3.7.2 Power flow in the structure

In this section the power flow in the structural members of the lattice structure is

considered. In a mechanical system, when power is input at a certain position, it

flows from regions with higher energy to regions with lower energy. This behaviour

can be seen in figure 3.24. In this figure, the power flow in the structural members

is represented by the arrows at the end of each member. Power is input into joint 4,

in the y direction as shown in the figure. The arrows are calculated by summing the

values of power at a the end of each member in the frequency range 20 Hz - 1 kHz.

It is clear that power flows from the left to the right hand side of the structure (this

is easier to be seen in the longitudinal members). By summing the power flowing for

all the members of each bay in the structure, the directions of power flow are given

in figure 3.25 showing the side view of the lattice structure and the arrows pointing

the direction of power flow in the structure for the third to tenth bay. The values of
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power input into each of these bays are shown in the table 3.5 where the values are

normalized with respect to the total input power applied at joint 4 in the y direction.

The mechanisms of power flow are in contrast with the power dissipation, where most

part of the power flows by longitudinal motion in the structure, the percentage of each

mechanism are

• Bending - 18.63 %

• Longitudinal - 80.99 %

• Torsion - 0.38 %

3.8 Concluding remarks

In this chapter a description of the dynamic behaviour of the lattice structure has

been presented regarding the interaction of short and long wavelength modes and

their influence on the mechanisms of energy dissipation and power flow of the lattice

structure. Simple expressions relating the geometric parameters of the lattice structure

have been developed and can be used to predict when short and long wavelength modes

occur and their respective frequency values. Some important conclusions of this chapter

are listed below

• The lattice structure considered in this thesis has several SWM in the frequency

range considered which are responsible for dissipating most of the energy in the

system occurring by bending of the structural members.

• Because of the interaction between short and long wavelength modes, it is often

difficult to identify LWMs. With the ratio βi and the slenderness ratio lB/∆,

developed in this chapter, it is possible to predict if a frequency range has SWMs.

• The ratio βi also indicates which parameters of the structure control the presence

of SW and LW modes. Some of them can be used for tailoring the frequency

response of the system. These parameters are the cross section geometry (I/S),

the length of the members and the number of bays.
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• Although the frequency response of the cost function can be quite different when

the ratio (I/l2BS) is changed, the overall levels, when the cost function is summed

in the frequency range 20 Hz - 1 kHz, varies by only about 3 dB. Similar behaviour

occurs with the input power, which varies by only about 1 dB.

• The mechanisms of power dissipation in the structure are, however, modified when

the second moment of area changes. When the ratio (I/l2BS) increases, dissipation

by longitudinal motion of the structural members become more important.
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pinned-pinned clamped-clamped
i - mode number ωi,D/2π ωi,L,B/2π ωi,D/2π ωi,L,B/2π

1 31.2 62.4 70.7 141.5
2 124.8 249.7 195.0 390.0
3 280.9 561.8 382.3 764.7
4 499.4 998.75 632.0 1264.1
5 780.3 1560.6 944.2 1888.3

Table 3.1: pinned-pinned and clamped-clamped natural frequencies for the members in the
structure given in Hz.
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Frequency [Hz]

500 600 700 800 900 1000

D D D D DL
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L
1 2 3 4
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Figure 3.1: Natural Frequencies of the lattice structure. The vertical lines indicate each
natural frequency. The left and right hand side of the boxes D and L indicate groups for
the natural frequencies when considered the pinned-pinned and clamped-clamped boundary
conditions for the structural members. D is for the diagonal members and L for longitudinal
and batten members.
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Mode number (i)
lB
∆

1 0.41m(m2 + Cs)1/2

2 0.15m(m2 + Cs)1/2

3 0.08m(m2 + Cs)1/2

4 0.05m(m2 + Cs)1/2

Table 3.2: The values for the slenderness ratio for which the first four long wavelength bending
modes to occur before the first SWM as a function of the number of bays

Mode number
lB
∆

1 4.18m
2 2.09m
3 1.39m
4 1.05m

Table 3.3: The values for the slenderness ratio as a function of the number of bays for the
first four long wavelength torsional modes

Mode number
lB
∆

1 1.18m
2 0.59m
3 0.39m
4 0.30m

Table 3.4: The values for the slenderness ratio as a function of the number of bays for the
first four long wavelength longitudinal modes to occur before the first SWM
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Bay number Power input in the bay / Total power input in the structure
3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8305
4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6845
5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5794
6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4879
7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3983
8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3204
9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2421
10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1628

Table 3.5: The sum of power input into the bays in a frequency range 20 Hz - 1kHz for a
force of 1 N applied at joint 4, in the y direction. The structural damping in the system is
given by η = .005
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Figure 3.2: A schematic figure showing the coupled pendula system which exhibits mode
localization

Figure 3.3: A Short wavelength mode where the larger displacements are confined at the two
ends of the structure. For the structure considered in this thesis this occurs at 44.7 Hz.

Figure 3.4: A short wavelength mode taking place in many diagonal members of the structure.
For the structure considered in this thesis, this occurs at 65.8 Hz
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Figure 3.5: A hybrid mode of a long wavelength torsion and bending of some structural
members. For the structure considered in this thesis this occurs at 72.3 Hz.

0 100 200 300 400 500
Frequency [Hz]

600 700 800 900 1000

Figure 3.6: Natural frequencies of the lattice structure. The thin vertical lines indicate the
natural frequencies of the structure obtained by finite element method using the beam ele-
ment. The thicker and higher lines indicate the long wavelength natural frequencies obtained
from an equivalent continuum model.
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i ii> 1 < 1= 1

Figure 3.7: A diagram illustrating the ratio βi. (a) first SWM occurs after the i-th LWM, (b)
first SWM occurs at the same frequency of the i-th LWM and (c) first SWM occurs before
the i-th LWM.
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Figure 3.8: The slenderness ratio lB/∆ as a function of the number of bays in the structure,
m, plotted for the first four long wavelength bending modes of the lattice structure.
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Figure 3.9: The slenderness ratio lB/∆ as a function of the number of bays in the structure,
m, plotted for the first four long wavelength longitudinal modes of the lattice structure. The
dashed line indicated the Euler-Bernoulli limit for the first bending mode of the diagonal
member.
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Figure 3.10: Slenderness ratio lB/∆ as a function of the number of bays in the structure, m,
plotted for the first four long wavelength torsinal modes of the lattice structure. The dashed
line indicated the Euler-Bernoulli limit for the first bending mode of the diagonal member.

82



Chapter Three 3.8. Concluding remarks

8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

m

l B
/∆

w

w

(  
 )

(  
 )

<

1

1

SW
M

LW
M

, b
en

di
ng

w

w

(  
 )

(  
 )

>

1

1

SW
M

LW
M

, b
en

di
ng

w

w

(   )
(   )<

1

1

SWM

LWM, torsio
nal

w

w

(   )
(   )>

1

1

SWM

LWM, torsional

w
w

(   ) (   )>1
1

SWM
LWM, longitudinal

w
w

(   )
(   )<

1
1

SWM LWM, longitudinal

l

l

D

B,L

/

/

d

d

Figure 3.11: The slenderness ratio lB/∆ as a function of the number of bays in the structure,
m, plotted for the first long wavelength mode for bending, torsion and longitudinal motion
of the lattice structure. The nominal ratio is identified for the diagonal members lD/∆ and
for the longitudinal/batten members lB/∆.
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Figure 3.12: The natural frequencies of the lattice structure for various values of the ratio
(I/l2BS) represented by the dots. The values in the vertical axis are normalized by the nominal
ratio (I/l2BS)nominal. Some long wavelength natural frequencies are identified.
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Figure 3.13: The sum of the cost function over the frequency range 20-1kHz (resolution 1 Hz)
for different values of second moment of area of the structural members. dB ref. 1 m2/Ns2.
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Figure 3.14: The total power input and power dissipated in the structure calculated by the
dynamic stiffness method. The thick line is the power input and the thin line is the power
dissipated. Values are relative to a force of 1 N applied at joint 4 in the y direction.
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Figure 3.15: The total power input and power dissipated in the structure calculated by the
dynamic stiffness method. The thick line is the power input and the thin line with × marks
is the power dissipated (where the absolute value of these results have been used to fit the
dB scale). Harmonic force has been applied at joint 4 in the y direction - dB ref. 1 W/N2
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Figure 3.16: The proportion of power dissipated by longitudinal (thick line), torsional (dashed
line) and bending (thin line) normalized by the total power dissipate in the structure. The
results given are as a percentage of the total dissipated power and have been calculated by
the dynamic stiffness method with a force applied at joint 4 in the y direction.
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Figure 3.17: The power dissipated individually by longitudinal (thick line), torsional (dashed
line) and bending (thin line). The results have been calculated by the dynamic stiffness
method with a force applied at joint 4 in the y direction. - dB ref. 1 W/N2
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Figure 3.18: The total power dissipated by the structural members. Colours indicate power
levels in dB for each structural members (light colours for higher values and darker colours
lower values). Results are relative to the sum of the values in the frequency range 20 Hz - 1
kHz. - dB ref. 1 W/N2
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Figure 3.19: The power dissipated for each structural members by bending mechanism.
Colours indicate levels of power in dB for each structural members (light colours for higher
values and darker colours lower values.) - dB ref. 1 W/N2
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Figure 3.20: The power dissipated for each structural members by longitudinal motion.
Colours indicate levels of power in dB for each structural members (light colours for higher
values and darker colours lower values.) - dB ref. 1 W/N2
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Figure 3.21: The power dissipated for each structural members by torsional motion. Colours
indicate levels of power in dB for each structural members (light colours for higher values
and darker colours lower values.) - dB ref. 1 W/N2
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Figure 3.22: The sum of input power in the frequency range 20 Hz - 1 kHz (using frequency
resolution of 1 Hz) for different values of (I/l2BS) for a disturbance force applied at joint 4 in
the y direction. dB ref. 1 W/N2
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Figure 3.23: The average power dissipated in the frequency range 20-1kHz by longitudinal
motion (thick line), torsional motion (dashed line) and bending motion (thin line) for various
values of the second moment of area for a disturbance force of 1 N applied at joint 4 in the
y direction.
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Figure 3.24: Diagram showing the direction of power flow in the structure. Results are for
the sum of power flow over the frequency range 20 Hz - 1kHz.
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Figure 3.25: Side view of the lattice structure and the direction of power flow for the bays in
the lattice structure. The disturbance force is applied at joint 4, in the y direction.
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Chapter Four

The feedforward control of vibration

4.1 Introduction to feedforward control

In this chapter, active feedforward control of vibration is considered for the lattice

structure shown in the introduction. The concept of feedforward control is based on

the principle of superposition for linear systems, where the waves generated by a control

actuator cause destructive interference in the waves generated by disturbance sources.

In 1943 Paul Lueg filed a patent, certified in 1936 [98], describing the principle of

controlling sound waves by means of a secondary source, which is recognized as one

of the first applications of feedforward control. There is comprehensive literature on

the applications of feedforward control applied to problems of vibration and noise.

The principles of feedforward control applied to the reduction of noise are discussed

in reference [54] and in the control of vibration of mechanical systems in references

[55] and [99]. In the field of civil engineering, feedforward control has been applied

in the control of seismic disturbances [100] and also in the control of vibration in

offshore structures [101]. In the field of aerospace engineering, noise radiated from the

payload faring has been controlled through feedforward control in reference [102] and

the vibration of a lattice structure is controlled using feedforward control in reference

[24]. In this thesis, active control is applied in the lattice structure described in chapter

1, with the objective of minimizing the cost function previously discussed in chapters 1,

2 and 3 (sum of the squared linear velocities at joints 31, 32 and 33). In this analysis,

the disturbance force is applied at joint 4, in the y direction. All the discussion in this

chapter assumes the existence of a tonal reference signal, where the magnitude and

phase of the disturbance force are known. It is also assumed that the detection of the

reference signal is unaffected by the action of the controlling forces. Although only

one disturbance force is considered later, the analysis is initially presented for the case

of multiple disturbances and multiple control sources. The theory discussed in this

chapter is the multichannel feedforward control described by Nelson and Elliott [54]

for the case of harmonic disturbances. As disturbances are assumed to be harmonic,
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each frequency is considered as an individual problem and solved separately. Later in

this chapter the application of feedforward control using one, two and three control

sources are discussed. The optimum placement of actuators for theses cases is also

considered. The next part of this chapter is an analysis of the power flow and dissipation

mechanisms when feedforward control is applied in the lattice structure. The final

section of this chapter examines the behaviour and performance of the feedforward

control strategies taking into account the different regimes of short and long wavelength

modes.

4.1.1 The feedforward control principles

Consider the block diagram shown in figure 4.1 describing the feedforward control

strategy, where Hff is the feedforward controller, the velocity vector vm denotes the

measured velocities in the cost function and is calculated from the mobility Ymd which

is related to the vector of disturbance forces fd, and from the mobility Ymc which

related to the vector of control forces fc in the frequency domain as

vm(ω) = Ymd(ω)fd(ω) + Ymc(ω)fc(ω) (4.1)

where, ω is the angular frequency. This explicit dependence on ω has been dropped in

the following formulation for simplicity. The vector vm has dimension nm × 1, where

nm is the number of degrees of freedom to be controlled. The vector fd has dimension

nd×1, where nd is the number of disturbance forces; the vector fc has dimension nc×1,

where nc is the number of control forces. The mobility Ymd has dimension nm × nd

and the mobility Ymc has dimension nm×nc. Equation 4.1 can be written in the form

vm = vmd + Ymcfc (4.2)

where, vmd is the contribution to the vector of velocities vm due to the disturbance

forces. This vector can be calculated as

vmd =

nd∑
k=1

ymd(k)fd(k) (4.3)
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where, k = 1, . . . , nd is the number of disturbance forces, ymd(k) is a vector of mobilities

relating each element of the vector vmd to the disturbance force fd(k). The vector

ymd(k) has dimension nm × 1 and each column of the matrix Ymd if formed from the

vectors ymd(k) which is calculated from

ymd(k) = jω
(
BmD−1d(k)

)
for k = 1, . . . , nd (4.4)

where, D is the dynamic stiffness matrix of the whole system that can be calculated

from the methods described in chapter 2. d(k) is a distribution vector, where all

elements are equal to zero, except the element corresponding to the degree of freedom

where the disturbance force (or moment) is applied in the system. The non-zero element

of d(k) has value 1. This lead to a normalization of the vector ymd(k) expressed in

metres per second per unit force (m/Ns). Bm is a Boolean matrix that maps the

degrees of freedom m corresponding to each element of the vector vm with all degrees

of freedom in the structure. Bm has dimension nm × ndof , where nodf is the number

of degrees of freedom in the system. Considering the lattice structure with 33 joints

where 6 degrees of freedom are used to describe the motion at each joint, the structure

has a total of 6×33 = 198 dofs and the dof number of the the linear velocities at joints

31, 32 and 33 are given in table 4.5, where, the dof number for the linear coordinate

x, y and z for a joint is given by (jn× 6)− 5, (jn× 6)− 4 and (jn× 6)− 3, respectively,

where jn in the joint number. The matrix Bm is given by



dof 1 ··· 181 182 183 ··· 187 188 189 ··· 193 194 195

vm(1) 0 · · · 1 0 0 · · · 0 0 0 · · · 0 0 0

vm(2) 0 · · · 0 1 0 · · · 0 0 0 · · · 0 0 0

vm(3) 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0 0

vm(4) 0 · · · 0 0 0 · · · 1 0 0 · · · 0 0 0

vm(5) 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0

vm(6) 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 0

vm(7) 0 · · · 0 0 0 · · · 0 0 0 · · · 1 0 0

vm(8) 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 0

vm(9) 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1



(4.5)
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On the right hand side of equation 4.2, Ymc can be written in expanded form as

Ymc =
[

ymc(1) . . . ymc(k) . . . ymc(nc)
]

(4.6)

where the vectors ymc(k), for k = 1, . . . , nc, forming each column of Ymc are determi-

nated individually for each one of the control forces fc(k) as

ymc(k) = jω
(
BmD−1

[
BT

c (k)TT (k)bT
])

(4.7)

where, the term
[
BT

c (k)TT (k)bT
]

is used in order to take into account the way the

actuator applies forces in the structure. An example of an actuator in the lattice

structures is shown in figure 4.2. The applications of feedforward control in lattice

structures usually make use of piezoactuators which replace the structural members (or

part of them). The structural members which before were passive elements are replaced

by active members. The passive modifications introduced into the system dynamics

can be considered in the system model by adding the dynamic stiffness matrices of the

active members to the dynamic stiffness matrix of the whole system D (according to

the principles of compatibility and force equilibrium), and removing the contribution

of the replaced members. These actuators act by reaction in the structure which are

represented by two point forces applied at the ends of the actuator in the longitudinal

directions. For low frequencies these two forces can be considered equal in magnitude,

however, they are applied in opposite directions as shown in figure 4.2. Therefore the

use of the vector b given by

b =
[
−1 0 0 0 0 0 1 0 0 0 0 0

]
(4.8)

where the non-zero elements of the vector b correspond to the longitudinal coordinates

at the ends of a actuator. The matrix T(k) is the coordinate transformation matrix

for the actuator k and Bc(k) is a Boolean matrix to map the ends of the actuator

according to the joint numbering scheme of the structure (which has been discussed in

chapter 2). Bm is the same matrix of equation 4.5.
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4.1.2 The optimum control forces

In feedforward control theory, the optimum control forces can be calculated to mini-

mize some quantity. Considering the vector of control forces related to the vector of

disturbances forces by

fc = Hff fd (4.9)

where, Hff is the matrix of complex feedforward gains with dimension nc×nd in figure

4.1. Combining equations 4.9 and 4.1 leads to

vm = (Ymd + YmcHff ) fd (4.10)

Often in applications of active vibration control it is common to use cost functions

based on the square of a quantity such as acceleration or velocity. The formulation of

sensible cost functions for similar applications has been discussed in references [24] and

[59]. In this thesis, the objective function is defined as the sum of the linear squared

velocities at the joints 31, 32 and 33 of the lattice structure showed in figure 1.4. This

objective function, or cost function J , is proportional to the kinetic energy at these

joints and it is calculated from

J = vH
mvm (4.11)

where vm comprises the linear velocities at these joints. Combining equations 4.2 and

4.11, the cost function is given by

J = (vmd + Ymcfc)
H (vmd + Ymcfc)

= vH
mdvmd + vH

mdYmcfc + fH
c YH

mcvmd + fH
c YH

mcYmcfc

(4.12)

Equation 4.12 is known as Hermitian quadratic form and can be written in the form

J = fH
c Afc + fH

c y + yHfc + c (4.13)
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where, A = YH
mcYmc is a Hermitian matrix, fc is a vector of complex control forces,

so that fH
c Afc is a real scalar, y = vH

mYmc is vector of complex constants, and as

fH
c y + yHfc = fH

c y +
[
fH
c y

]∗
(where ()∗ is the complex conjugate), the two terms also

give a real scalar. The term c = vH
mdvmd is a real scalar constant. The cost function J is

then scalar as it is the sum of three real scalar terms. As the product A = YH
mcYmc is a

positive definite matrix A, the quadratic form of equation 4.12 describes a paraboloid

which has a frequency dependent minimum. This means that the optimum control

force should change with frequency. It is also import to point that in this analysis,

the number of control forces is considered to be less than the number of error sensors.

The mathematical details for finding the minimum are given in the reference [54]. The

expression for the control forces that gives the minimum value of J is given by

foptimum
c = −

(
YH

mcYmc

)−1
YH

mcvmd

= −
(
YH

mcYmc

)−1
YH

mcYmdfd

(4.14)

From equations 4.9 and 4.14 the optimum feedforward controller is given by

Hoptimum
ff = −

(
YH

mcYmc

)−1
YmcYmd (4.15)

The minimum value for the cost function is given by

Joptimum = vmd

[
I−Ymc

(
YH

mcYmc

)−1
YH

mc

]
vmd (4.16)

It is possible to measure the performance of the feedforward control by calculating the

attenuation in the cost function. This attenuation can be expressed in decibels as

a [dB] = 10 log10

J0

Jff

(4.17)

where, J0 is the cost function without control and Jff is the cost function when feedfor-

ward control is applied to the system. For optimum feedforward control, these values

in dB are always greater than or equal to zero. This expression should be evaluated

for each frequency of interest. In this thesis the frequency range of analysis is 20 Hz

- 1 kHz. The low frequency limit (20 Hz) was chosen to remove the influence of the
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rigid body in the analysis of the system, where the controller has no influence. For

simplicity, 4.17 is reformulated as

ak = 10 log10

1000Hz∑
ω=20Hz

J(ω)

1000Hz∑
ω=20Hz

Jk(ω)

(4.18)

where ak is the attenuation in decibels of the cost function due to the influence of the

feedforward controller applied at member k and ω in this equation is a discrete variable

evaluated in this case every 1 Hz. Although the details of the frequency dependency are

not considered in equation 4.18, this expression can capture the overall performance

of the controller in this frequency range, which makes it easier to compare the overall

performance between different actuators positions on the structure.

4.1.3 Control effort

The control forces have a magnitude and a phase in relation to the disturbance forces.

Different positions in the structure may require control forces with different magnitude.

This is due to the control authority of the actuator for that position. Positions with

larger control authority usually requires less control effort to attenuate the vibration.

The effort of the k-th controlling force can be calculated as

ek = fH
c,kfc,k (4.19)

where, fc,k is the vector of control forces for the k-th actuator. This result can be

normalized in relation to the disturbance effort as

ek [dB] = 10 log10

ek

ed

(4.20)

where ed is the effort associated by the disturbance force, which is equal to the squared

disturbance force.
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4.2 Numerical simulations

In this section, feedforward control simulations are presented using the model ob-

tained by the dynamic stiffness method, described in chapter 2. The control forces are

assumed to be applied using piezoelectric actuators which replace structural passive

members. In practical situations, actuators will have different passive properties to the

structural members, which will introduce passive modifications in the system. These

modifications are not considered in the simulations used in this thesis. The result of

this assumption is usually a small degradation in the performance of the active control

which is verified by comparison of numerical results with simulations using experi-

mental data and discussed in the section 4.2.2 of this chapter. In all the numerical

simulations, only one disturbance force has been considered but the cases of one, two

and three control actuators are considered. The disturbance force of 1 N is applied

at joint 4, in the y direction in a frequency range of 20 Hz to 1 kHz using frequency

resolution of 1 Hz.

4.2.1 One control force

Exhaustive simulations were performed using the model obtained by the dynamic stiff-

ness method for each position where a single actuator could be placed in the lattice

structure. (93 possible positions for the placement of a single actuator). To predict

the best position of one actuator it is usually necessary to perform these simulations in

all the candidate members to calculate the minimum cost function for each, as given

by equation 4.18. These values are shown in table 4.2 when active control is applied

for each member position. These positions are identified by the joint number of the

members. The results of this table have also been plotted in the figure 4.3 in the form

of a diagram, where attenuation values are represented by colour gradients. Most of

the positions producing higher attenuation in the cost function are found around the

position where the disturbance force is applied. Moreover, placing actuators in the

members on the bottom of the structure give low values of attenuation. This is be-

cause they have low authority in controlling the disturbance force which is applied in

the y direction. Members on the bottom have large authority in the x and z directions.
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The best position for placing a single actuator is at the member between by the joints

[04-05], giving an attenuation in the cost function of 9.08 dB. The worst position for

placing one actuator is at the member between the joints [31-33] giving a attenuation

of 3.34 dB. Frequency responses for the cost function with feedforward control with the

first two best position to place a single actuator are shown in figures 4.4(a) and 4.4(b).

The cost function for the two worst positions to place a single actuator are shown in

figures 4.5(a) and 4.5(b). In these results the thin lines are the cost function without

control and the thick line are the cost function with control. It can be seen that when

feedforward control is applied there is higher attenuation in some frequency ranges

than others. The frequency range with higher attenuation vary with the position of

the actuator. This means that even though two positions for placing a single actua-

tor can have similar attenuation values (using the expression of equation 4.18) their

frequency response can be quite different. Also, for any frequency, the cost function

with feedforward control is always equal to or smaller than the cost function without

control. This is because each frequency is treated as separated problem and in some

cases, the optimum control requires a small or null controller force.

4.2.2 Simulation using experimental data

In order to validate the simulations of feedforward control, frequency response func-

tions were measured and feedforward control was simulated in an off-line mode using

experimental data. The experimental data was obtained by an experiment consisting

of two parts. The first part was the measurement of frequency response functions re-

lating the disturbance force applied at joint 4 in the y direction to the linear velocities

at joints 31, 32 and 33. This is similar to the experiment described in the chapter

two. The only difference is that a piezoelectric actuator (see appendix F for details of

the actuator) was included in the members described by the joints [04-08] as shown

in figure 4.6. During these measurements no voltage was applied to the piezoelectric

actuator, therefore, the set of frequency response functions contained only the passive

influence of the actuator. The second part of the experiment consisted of the measure-

ment of frequency response functions, using the actuator placed in the member [04-08]

was used to excite the system. A random signal generated by the frequency analyser
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passed through an amplifier (details are given in the appendix F) in order to provide

the appropriate voltage to the piezoelectric actuator. The measured frequency response

functions are given in m/Vs. During this test, the primary disturbance shaker was de-

tached from the system. All the experiment set up, frequency parameters and sensors

used in this test were the same used in the experiment described in chapter 2. The cost

function calculated from the experimental data, with and without feedforward control

are shown in the figure 4.7 and the simulated results obtained by the dynamic stiffness

method are shown in the figure 4.8. The attenuation obtained from the experimental

data in the frequency range 20 Hz - 1 kHz is 5.98 dB while the attenuation obtained by

the numerical simulation for an actuator in this position is 7.83 dB. One of the reasons

for this difference in the performance may be because the passive actuator properties

were neglected in the numerical model. Despite this difference, both results show sim-

ilarities in the frequencies ranges where feedforward control is capable of producing

higher attenuation.

4.2.3 Two and three controlling forces

The analysis of feedforward control for the case of two and three control actuators

is considered in this section. As discussed in a previous section, for a structure with

nm members, there are nm candidate positions for placing one control actuator of the

type shown in figure 4.6. If more than a single actuator is to be used, the number of

candidate positions increases rapidly. The number of possible combinations u to place

r actuators in the structure is given by

ur =
nm!

r!(nm − r)!
(4.21)

For two and three actuators u2 = 4278 and u3 = 129766. This shows that, high

computational cost is expected to search all combinations of actuator position as the

number of used actuators increases. In some cases, combinatorial search algorithms

may be necessary as discussed in reference [24]. In this thesis, the optimum positions

for two and three actuators are found by exhaustive search. The optimal positions are

chosen based on the attenuation in the cost function in the frequency range 20 Hz - 1
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kHz where frequency steps of 1 Hz were used in the analysis. Implementation of the

exhaustive searching procedure can be simplified if all the transfer functions relating

the forces from the actuator candidate positions are calculated a priori and stored.

(In this case 93 sets of transfer functions). Using the principle of superposition, it is

then possible to calculate the attenuation for configurations of two or more control

actuators. Using this procedure, the search for optimum position for three actuators

took approximately 30 hours to complete while the search for two actuators took less the

two hours. For two actuators, the colourmap given in figure 4.9 shows the attenuation

in the cost function represented by the colours. The two axes of the diagram represent

members numbered from 1 to 93. These members are identified according to their

joint number in appendix G. The bottom left part of the diagram is the regions where

the two actuators are close to the disturbance force, which is applied at joint 4. The

diagonal line going from the bottom left to the top right corners of the diagram showing

lower levels of attenuation (darker colours) correspond to the use of only one control

actuator. Higher levels of attenuation are obtained when at least one of the actuators

is placed near to the disturbance source. The ten best configurations for placing two

actuators and their respective attenuation are shown in table 4.3. Similarly, table 4.4

contains these results for three actuators. The range of performance for the worst and

best positions for 1, 2 and 3 actuators are shown in the table 4.5. The maximum

theoretical attenuation that can be achieved with 3 actuators applying feedforward

control is 26.20 dB. This value can be used as a baseline to compare the performance

of other forms of active control.

The cost functions without control and for the cases of one, two and three actuators

for optimum feedforward control are compared in figure 4.10. The positions where

chosen in such a way that the position of one actuator is included in one of the po-

sitions for two actuators and the positions for two actuators are also included in the

actuator configuration for three actuators. The configuration for the three cases and

their respective attenuation values are listed below

• 1 Actuator - Member [04-08] - 7.83 dB Attenuation

• 2 Actuators - Members [04-05] and [04-08] - 16.73 dB Attenuation
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• 3 Actuators - Members [04-05], [04-08] and [11-15] - 25.63 dB Attenuation

4.3 Power analysis with feedforward control

In this section, analysis of power in the lattice structure is considered when feedforward

control is applied to minimize the cost function. For a passive structure, the total

power input in the system is dissipated internally by motion of the structural members.

When a secondary source is applied to the system to reduce the vibration in certain

positions of the structure, the energy behaviour should change. For a given frequency,

the forces from a control actuator either supply or absorb energy from the system.

Usually any form of active control can be seen as a change in the system impedance.

For this reason, when control forces are applied to the system, the input power from

the primary disturbance is affected. This means that, if power from the feedforward

control is positive, then three possibilities can occur; the total power input into the

system after control forces are applied remains the same before active control is turned

on. Another possibility is that the sum of power from the primary disturbance and

the power from the controller is smaller than the power from the primary disturbance

before control is applied, this can be written as

(pd,with control + pc) < pd,without control (4.22)

where the frequency dependence has been dropped for simplicity. pd,with control is the

power from the disturbance source when active control is applied to the system, pc is

the power from the control forces and pd,without control is the power from the disturbance

forces before feedforward control was applied. The second possibility is that the total

input power after control is applied is greater than the input power in the system before

control, which can be written as

(pd,with control + pc) > pd,without control (4.23)

In this situation, even though the cost function may be reduced some other positions in

the structure will have their levels of vibration increased to dissipate the extra energy

supplied to the system. Two examples to illustrate the discussion in this section are
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shown in figures 4.11 and 4.12. These figures show the system and the structural

member where the feedforward control forces are applied to minimize the cost function

with a single actuator. The arrows indicate the direction of power flow in the structure

and the member where active control is applied. The results are relative to the sum

of the frequency response points in the range 20 Hz - 1 kHz, using frequency steps

of 1 Hz. In both cases, the input power from the primary source before control was

1 Watt. Without control both members act passively and dissipate a small amount

of energy (0.008 and 0.009 Watts, respectively). The flow of energy in member [04-

05] is higher because this member is at a position closed to the disturbance force.

When active control is applied to the system, the flow of energy in the active members

change. To minimize the cost function, the control forces both provide energy to

the system as indicated by the direction of the arrows. The power from the primary

source also changes, from 1 Watt to 0.421 Watts for control with member [04-05] and

to 0.688 Watts for control with member [17-20]. The power input from the control

sources as function of frequency for these two cases are shown in figures 4.13 and 4.14,

respectively. In these figures, power is given in dB and negative values have been plotted

in thicker lines. It can be seen that member [04-05], which is near the disturbance force,

inputs more energy into the system than the actuator placed at member [17-20] (in

the middle of the structure). Exhaustive simulations where performed for all positions

of a single actuator in the lattice structure. These results are shown in figure 4.15

where the sum of the power over all frequencies is represented by the horizontal bars

for each member. Figure 4.15(a) shows the power input by the disturbance source

with control normalized by the power input by the disturbance source without control

[pd(in)with control/pd(in)without control]. Figure 4.15(b) shows the total power input in the

system with control normalized by the power input by the disturbance source without

control [(pd(in)with control + pc)/pd(in)without control]. For some positions the total power

input into the system is greater than the total power input into the system before

control. Figure 4.15(c) shows the power from the control sources normalized by the

power from the disturbance source without control [pc/pd(in)without control]. These results

shows that the power produced by the feedforward controllers is usually small compared

to the power from the disturbance source, but in general is positive. In the members
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at the end of the structure (near to the dofs to be controlled) the power from the

actuators is slightly negative. It also should be clear that these results are relative to

the sum of the points in a frequency range.

4.4 The influence of the short/long wavelength regime in the

feedforward control

To investigate the influence of short wavelength modes in the performance of feedfor-

ward control, numerical simulations where performed in three regions of the lattice

structure; close to the position where disturbance force is applied (joint 4), close to the

joints 31, 32 and 33 and in the middle of the lattice structure. A number of structural

members are chosen in these regions as actuator positions and the attenuation values

have been obtained for two values of the ratio (I/l2BS) as described below in terms of

the parameter βi

• (I/l2BS) = (I/l2BS)nominal, β1,bending = 0.61 and β1,torsion = 0.59

• (I/l2BS) = 10× (I/l2BS)nominal, β1,bending = 1.92 and β1,torsion = 1.87

This means that for vales of (I/l2BS) = 10 × (I/l2BS)nominal, the first SW natural fre-

quency is greater than the first LW bending natural frequency and the first LW torsional

natural frequency. For nominal values of (I/l2BS), the first SW natural frequency is

smaller than both LW bending and torsional natural frequencies. Figures 4.16, 4.18

and 4.20 illustrate the positions where feedforward control was implemented, for a re-

gion close to the disturbance source, close to the joints 31, 32 and 33 and at the middle

of the lattice structure, respectively. The comparison for the attenuation in the overall

cost function in the frequency range 20 Hz - 1 kHz (calculated using equation 4.18) are

shown in figures 4.17, 4.19 and 4.21 for a region close to the disturbance source, close

to the joints 31, 32 and 33 and at the middle of the lattice structure, respectively. In

these figures, the attenuation in the cost function only varies slightly for some of the

members. The maximum variation (for the member [29-33]) is smaller than 2.3 dB,

which is considered to be small. The conclusion is that the performance of feedforward

control is not affected much by different regime of SW/LW modes.
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4.5 Concluding Remarks

In this chapter, the feedforward control of vibration in the lattice structure has been

considered. The conclusions of this chapter are given below.

• The position of the control actuator is important in terms of the performance of

the active control system. The optimal position depends on frequency and also

the position of the disturbance force.

• The maximum theoretical attenuations achieved for one, two and three actuators

are 9.08, 16.73 and 26.21 dB, respectively, for the conditions described in this

chapter.

• Most of the good positions for placement of the actuator are in regions around

the position where the disturbance source is applied. The control forces in these

members, however, are required to input more energy into the system than at

other places.

• Numerical results show that in most cases, the power produced by the controlling

forces is positive, what brings to the conclusion that the physical mechanism of

feedforward control are different from forms of active control denominated active

damping.

• Short wavelength modes do not influence much the performance of feedforward

control.
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Joint number 31 32 33
Coordinates x y z x y z x y z

dof number 181 182 183 187 188 189 193 194 195

Table 4.1: The dof numbering of the coordinates x, y and z of the joints 31, 32 and 33.

Member a[dB] Member a[dB] Member a[dB]

[01− 02] 6.68 [01− 03] 4.56 [02− 03] 7.09
[01− 04] 7.65 [01− 05] 9.07 [02− 05] 7.17
[02− 06] 6.73 [03− 04] 3.88 [03− 06] 3.94
[04− 05] 9.08 [04− 06] 4.27 [05− 06] 5.30
[04− 07] 4.73 [04− 08] 7.83 [05− 08] 6.89
[05− 09] 6.06 [06− 07] 3.80 [06− 09] 3.88
[07− 08] 7.79 [07− 09] 4.49 [08− 09] 5.20
[07− 10] 4.23 [07− 11] 7.19 [08− 11] 6.75
[08− 12] 6.22 [09− 10] 3.98 [09− 12] 4.13
[10− 11] 6.27 [10− 12] 4.42 [11− 12] 5.97
[10− 13] 4.21 [10− 14] 6.43 [11− 14] 6.39
[11− 15] 7.17 [12− 13] 4.06 [12− 15] 4.09
[13− 14] 6.01 [13− 15] 4.25 [14− 15] 6.18
[13− 16] 3.91 [13− 17] 5.87 [14− 17] 6.35
[14− 18] 6.62 [15− 16] 4.11 [15− 18] 4.20
[16− 17] 4.83 [16− 18] 3.36 [17− 18] 5.03
[16− 19] 4.13 [16− 20] 6.10 [17− 20] 7.27
[17− 21] 6.62 [18− 19] 4.11 [18− 21] 4.09
[19− 20] 6.42 [19− 21] 4.27 [20− 21] 5.66
[19− 22] 4.07 [19− 23] 6.12 [20− 23] 6.85
[20− 24] 6.70 [21− 22] 4.09 [21− 24] 4.39
[22− 23] 5.59 [22− 24] 4.36 [23− 24] 5.97
[22− 25] 3.90 [22− 26] 5.30 [23− 26] 7.23
[23− 27] 6.45 [24− 25] 4.18 [24− 27] 4.58
[25− 26] 4.84 [25− 27] 4.62 [26− 27] 6.50
[25− 28] 3.47 [25− 29] 5.15 [26− 29] 6.72
[26− 30] 7.02 [27− 28] 4.09 [27− 30] 4.84
[28− 29] 4.97 [28− 30] 4.41 [29− 30] 7.00
[28− 31] 3.52 [28− 32] 5.41 [29− 32] 5.11
[29− 33] 7.01 [30− 31] 3.92 [30− 33] 5.79
[31− 32] 4.64 [31− 33] 3.34 [32− 33] 4.44

Table 4.2: The attenuation obtained by feedforward control in the frequency range 20 Hz
- 1 kHz, using 1 Hz frequency resolution, when a single actuator is used. The values of
attenuation have been calculated using equation 4.18.
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Actuator 1 Actuator 2 Attenuation [dB]

[04− 05] [04− 08] 16.73
[02− 05] [04− 05] 15.74
[01− 05] [07− 09] 15.69
[02− 03] [04− 05] 15.64
[20− 24] [04− 05] 15.37
[02− 06] [01− 05] 15.34
[05− 09] [04− 05] 15.27
[01− 03] [01− 05] 15.26
[07− 11] [11− 15] 15.25
[07− 08] [04− 05] 15.21

Table 4.3: The ten best configuration for two actuators using feedforward control. The values
are relative to the frequency range 20 Hz - 1 kHz, using 1 Hz of frequency resolution. The
values of attenuation have been calculated using equation 4.18.

Actuator 1 Actuator 2 Actuator 3 Attenuation [dB]

[02− 03] [04− 05] [04− 08] 26.21
[04− 05] [02− 06] [04− 08] 26.21
[10− 11] [01− 05] [05− 09] 26.17
[04− 05] [01− 05] [04− 08] 25.69
[04− 05] [04− 08] [05− 09] 25.82
[04− 05] [04− 08] [11− 15] 25.63
[10− 11] [11− 12] [01− 05] 25.59
[05− 06] [01− 05] [09− 10] 25.48
[01− 05] [05− 09] [06− 07] 25.46
[03− 06] [02− 03] [01− 05] 25.16

Table 4.4: The ten best configuration for three actuators using feedforward control. The
values are relative to the frequency range 20 Hz - 1 kHz, using 1 Hz of frequency resolution.
The values of attenuation have been calculated using equation 4.18.

Number of Actuators Minimum Attenuation [dB] Maximum Attenuation [dB]

1 3.34 9.08
2 3.53 16.73
3 6.00 26.21

Table 4.5: The maximum and minimum attenuation obtained by using one, two and three
actuators.

108



Chapter Four 4.5. Concluding Remarks

Y

vf

f

md

m
+

+

d

c
mcffH Y

Figure 4.1: A block diagram describing the elements of feedforward control strategy. The
dashed line indicate the detected signal correlated to the disturbance sources.
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Figure 4.2: A diagram showing how the actuator applies forces in the lattice structure.
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Figure 4.3: A diagram showing the attenuation values obtained when a single actuator is used
to minimize the vibration at joints 31, 32 and 33 for each position in the lattice structure. The
values in dB are represented by the colours, where lighter colours indicate higher attenuation
and darker colours indicate lower attenuation. dB ref. 1 m2/Ns2.
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(a) (b)

Figure 4.4: The cost function without control (thin line) and with control (thick line). (a)
actuator placed at member [4-5] and (b) actuator place at member [1-5]. The disturbance
force is applied at joint 4, in the y direction - dB ref. 1 m2/Ns2.

(a) (b)

Figure 4.5: The cost function without control (thin line) and with control (thick line). (a)
actuator placed at member [31-33] and (b) actuator place at member [16-18]. The disturbance
force is applied at joint 4, in the y direction - dB ref. 1 m2/Ns2.
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Figure 4.6: A photograph showing the piezoelectric actuator in the lattice structure placed
at member [04-08].
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Figure 4.7: The experimental cost function without control (thin dashed line) and with
control (thick line) for a actuator in member [04-08]. Disturbance applied at joint 4 in the y
direction - dB ref. 1 m2/Ns2
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Figure 4.8: The theoretical cost function without control (thin dashed line) and with control
(thick line) for a actuator in member [04-08]. Disturbance applied at joint 4 in the y direction
- dB ref. 1 m2/Ns2.
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Figure 4.9: The attenuation in the cost function when two actuators are used. The colour
gradients indicate the levels in dB where lighter colours refer to higher levels of attenuation
and darker colours refer to lower levels of attenuation. The respective joint numbers for each
member are given in appendix G. dB ref. 1 m2/Ns2.
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Figure 4.10: A comparison of the cost function without control and for the cases of 1, 2 and
3 control actuators. The positions for the actuators are: member [04-08] for one actuator,
members [04-05] and [04-08] for two actuators and members [04-05], [04-08] and [11-15] for
three actuators. dB ref. 1 m2/Ns2.
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Figure 4.11: The flow of energy in the member used for feedforward control (member [04-05])
where arrows indicate the direction of the power flow. (a) without control, (b) with active
control.
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Figure 4.12: The flow of energy in the member used for feedforward control (member [17-20])
where arrows indicate the direction of the power flow. (a) without control, (b) with active
control.
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Figure 4.13: The power input/dissipated as function of the frequency by the actuator placed
at member [04-05]. Thin lines indicate that power is positive and thick lines indicate that
power is negative (dissipated). dB ref. 1 W/N2
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Figure 4.14: The power input/dissipated as function of the frequency by the actuator placed
at member [17-20]. Thin lines indicate that power is positive and thick lines indicate that
power is negative (dissipated). dB ref. 1 W/N2
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Figure 4.15: The sum of the frequency response of power in the range 20 Hz - 1 kHz (using
1 Hz of frequency resolution). (a) The bars indicate εd = pd(in)with control/pd(in)without control

when feedforward control is applied for each member position in the lattice structure.
(b) The bars indicate εt = pd(in)with control + pc/pd(in)without control when feedforward con-
trol is applied for each member position in the lattice structure. (c) The bars indicate
εc = pc/pd(in)without control. Members are identified according to their joint numbers in the
appendix G.
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Figure 4.16: The lattice structure and the joint numbering scheme. Members plotted with
thicker lines indicate the region close to the disturbance where feedforward control has been
applied.
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Figure 4.17: The attenuation obtained by feedforward control in the frequency range 20
Hz - 1 kHz using frequency resolution of 1 Hz when active control is applied close to the
disturbance source. (a) for nominal values of the ratio (I/l2BS)nominal, (b) for values of the
ratio (I/l2BS) = 10(I/l2BS)nominal.
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Figure 4.18: The lattice structure and the joint numbering scheme. Members plotted with
thicker lines indicate the position close to the joints 31, 32 and 33 where feedforward control
has been applied.
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Figure 4.19: The attenuation obtained by feedforward control in the frequency range 20 Hz
- 1 kHz using frequency resolution of 1 Hz when active control is applied close to the joints
31, 32 and 33. (a) for nominal values of the ratio (I/l2BS)nominal, (b) for values of the ratio
(I/l2BS) = 10(I/l2BS)nominal.
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Figure 4.20: The lattice structure and the joint numbering scheme. Members plotted with
thicker lines indicate the position in the middle of the lattice structure where feedforward
control has been applied.

0

1

2

3

4

5

6

7

8

9

10

d
B

[16-19] [16-20] [17-20] [17-21] [18-21] [18-19]
Member

0

1

2

3

4

5

6

7

8

9

10

d
B

[16-19] [16-20] [17-20] [17-21] [18-21] [18-19]
Member

(a) (b)

Figure 4.21: The attenuation obtained by feedforward control in the frequency range 20 Hz
- 1 kHz using frequency resolution of 1 Hz when active control is applied in the middle of
the lattice structure. (a) for nominal values of the ratio (I/l2BS)nominal, (b) for values of the
ratio (I/l2BS) = 10× (I/l2BS)nominal.

121



Chapter Five

The feedback control of vibration

5.1 Introduction

In this chapter, feedback control is considered as a strategy for reducing vibration in the

lattice structure. The main aim of the chapter is to investigate a strategy of feedback

control called integral force feedback (IFF) and determine which factors influence the

performance when it is applied to control vibration in the lattice structure considered in

this thesis. The influence of SWMs in the performance of feedback control is analysed,

as well as the energy within the structure using power analysis. The numerical results of

this chapter are based on the models obtained using the methods described in chapters

2 and 3. Some of the results are compared to the results of feedforward control from

chapter 4.

The main difference between feedback and feedforward control is that no external

reference signal is used, and the sensed output signal is used to drive the controller,

including random and transient, but the performance is not generally as great as when

external information drive the disturbance is incorporated in feedforward control.

5.2 Introduction to feedback control of vibration

Feedback control is an engineering discipline that is applied to various areas of science.

In the field of vibration control, a feedback control system can reduce vibration by

automatic modification of the structural response of the system. According to reference

[55], a feedback active control system can assume many forms, but there are three

important and common components; a sensor (to detect the vibration), an electronic

controller (to manipulate the signal from the detector) and an actuator (to modify the

mechanical response of the system). There is an enormous number of applications of

feedback in the control of vibration in mechanical systems, so the review in this section

discusses only about the applications in the field of space structures.
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Chapter Five 5.3. Feedback control principles

5.2.1 The feedback control applied to space structures

According to reference [103], the first major United States Government program in

this area was the Active Control of Space Structures (ACOSS) started in 1978 which

produced many of the first experiments related to the control of Large Space Structures

[104, 105]. Various types of actuators have been considered in the feedback control of

vibration of space structures. Laboratory experiments using magnet-coil force motors

mounted on diagonal truss members, attached to the grounded base, are considered

in references [106], [107], [108] and [109]. Grounded torque motors have been also

considered in references [110] and [111]. Magnet-coil motors have limitations when

used as primary load-carrying structural members because; 1) without electric power,

they have zero stiffness; and 2) even with power, they are much more flexible than

other similar structural members. (However such motors may be practical if applied in

parallel with another structural member). Inertial actuators also known as reaction-

mass or proof-mass actuators have been considered in references [112] and [113]. These

types of actuators, however, have limitations in controlling vibration in frequencies

below the natural frequency of the actuator. The use of tendons in the control of

a flexible beam-like appendage attached to a large spacecraft is considered in refer-

ences [114] and [115]. The use of piezoelectric active members to control vibration

in space structures has also been considered by many researchers, for example, Wada

[116] presents a general description of the research area of adaptive structures. Use

of piezoelectric actuators in the semi-active control of space truss structures is con-

sidered in references [117] and [118]. The general theory of feedback control applied

to the control of vibration in mechanical systems can be found in references such as

[10, 55, 58, 119, 120, 121]. Applications of the IFF control strategy can be found in

references such as [49, 57, 122, 123, 124, 125, 126, 127]. A recent reference on feedback

control of a space lattice structures is given by [128].

5.3 Feedback control principles

Consider the block diagram describing the feedback control showed in chapter one and

repeated in figure 5.1 for convenience, where fd and fc are the vectors of disturbance and
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control forces. The terms Ysd and Ysc are mobility matrices relating the disturbance

forces and control forces, respectively, to the vector of controlled velocities vs and Hfb

is a matrix of feedback control gains. The vector of controlled velocities can be written

as

vs = Ysdfd + Yscfc (5.1)

As the controlled forces depend upon the control velocities vs, equation 5.1 can be

written as

vs = Ysdfd + YscHfbvs (5.2)

Equation 5.2 can be rearranged to give

vs = (I−YscHfb)
−1 Ysdfd (5.3)

where, I is the identity matrix of the size of the product of (YscHfb). The cases

considered in this thesis assume only collocated control. This means that the control

input is applied at the same position and direction as the sensor output. Often in

feedback control, the variables of interest, the velocities (vm) are not in the same

position where the control forces are applied. The general block diagram of such a

feedback controller is represented in figure 5.2 in which the sensed velocities vs, which

are feed back to the controller are distinguished from the measured velocities vm, used

to evaluate the performance in the cost function. The closed loop response of the

velocity vector vm in this case is given by reference [58] as

vm =
(
Ymd + YmcHfb (I−YscHfb)

−1 Ysd

)
fd (5.4)

There are many ways of designing the feedback controller to control the measured

velocities vm. Optimal control, for example, can be used to specify the feedback con-

troller that minimises a quadratic cost function involving vm, but requires a complete

and accurate model of all the other responses in equation 5.4, usually in state-space

form. The very high order of the dynamics of the structure considered here, as dis-
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cussed in chapter 2 with about 700 modes in the bandwidth of interest would mean

that such an optimal design would be computationally demanding. The optimal de-

sign also assumes that the system responses are fixed, whereas in reality there will

be considerable changes, particularly in the responses of the higher order modes, with

small temperature changes, external loads, etc. It was thus felt that such an optimal

controller is impractical in this case.

Other feedback control approaches, using collocated actuators and sensors, are inher-

ently stable, despite any changes in the response of the structure [10]. They have

the additional advantage of using only single channel feedback loops, and are thus

decentralized and inherently modular [129]. One such method, which is particularly

applicable to lattice structures, is integral force feedback, in which a displacement ac-

tuator is driven by the integrated amplitude of a force sensor at one end. Preumont [10]

shows that such an arrangement can only dissipate power, and must thus be inherently

stable.

5.3.1 Stability of a single channel feedback control system

In the case of single channel feedback control, equation 5.4 can be written as

vm =
(
Ymd + ymcHfb (1− YscHfb)

−1 Ysd

)
fd (5.5)

where Ysc and Hfb are now complex numbers. According to reference [55] the stability

of the system can be determinated by inspection of the position of the closed loop poles.

The poles of the system can be determinated by finding the roots of the characteristic

equation in the Laplace domain for a SISO (single input single output) system given

by

(1− Ysc(s)Hfb(s)) = 0 (5.6)

In many practical cases, especially when Ysc must be measured experimentally, the

polynomial form showed in equation 5.6 is not available. The stability of the system

then needs to be determinated from input-output measurements, made on the system

before control. The Nyquist stability criterion provides such a method, using the
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open loop response (Ysc(jω)Hfb(jω)). The theoretical bases for the Nyquist stability

criterion is described, for example, in references [54], [57] and [130]. The outcome is

that the closed loop system is stable only if the Nyquist plot of the open loop frequency

response (Ysc(jω)Hfb(jω)) does not enclose the point (-1,0) as ω varies from −∞ to

∞.

5.4 Integral force feedback

Consider the diagram of force feedback control shown in figure 5.3, where the structure

is subject to two forces fc in opposite directions driven by the piezoelectric actuator.

The integral force feedback controller is driven by the sensed force fs in the member

where the actuator is inserted (which is measured by a force sensor indicated in the

figure). The feedback controller applies a voltage to the actuator proportional to this

force that is converted to an extension or compression of the piezoelectric actuator.

According to the diagram describing the elements of force feedback control shown in

figure 5.4, the closed loop measured force fs can be expressed as

fs = Gsdfd + DscHifffs (5.7)

where, Gsd is a transmission matrix which relates the disturbance forces fd with the

sensed forces fs. Dsc is the dynamic stiffness matrix that relates the unconstrained

actuator displacements to the sensed forces. Hiff is a matrix of feedback gains and fs

is the closed loop measured forces. The integral feedback matrix Hiff can, for example,

be written as

Hiff =
1

jω


H1 0 . . . 0

0 H2 . . . 0
...

...
. . .

...

0 0 . . . Hnc

 (5.8)

where, H1, H2, . . . Hnc are the feedback gains for the actuators 1, 2, . . . nc, where

nc is the number of control actuators to be used. Note that this matrix is diagonal,

which implies decentralized control. The elements of the transmission matrix Gsd are
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calculated one by one, The force in the a-th sensor fs(a, k) due to the k-th disturbance

force fd(k), is given by

fs(a, k) = bTaBaD
−1fd(k) (5.9)

where, Ta is the coordinate transformation matrix for the member where the sensor

a is placed with dimension 12 × 12, Ba is the Boolean matrix that maps the joint

coordinates of the member where the sensor is placed with the local coordinates of the

member (as discussed in chapter 2 and 4) with dimension 12 × 6nj (where nj is the

number of joints in the structure). The matrix D is the dynamics stiffness the whole

structure, with dimension 6nrmj × 6nj, fd(k) is the vector of k-th disturbance force,

with dimension 6nj× 1 and b is used in order to consider the longitudinal reactions on

the structural member, given by

b =
[
−1 0 0 0 0 0 1 0 0 0 0 0

]
(5.10)

The closed loop sensed force can be calculated as

fs = (I−DscHiff)−1 Gsdfd (5.11)

The velocity vector vm can then be calculated as

vm = Ymdfd + YmdDscδc (5.12)

The relationship between the voltage applied and the unconstrained deformation in

the piezoelectric actuator is given by [10]

δ = nsd33V (5.13)

where, ns is the number of piezoelectric stack disks, d33 is the piezoelectric constant and

V is the voltage applied to the actuator, which is proportional to fs. The unconstrained

control deformation δc of the piezoelectric actuator is given by
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δc = Hifffs (5.14)

The elements of the dynamic stiffness matrix Dsc are also calculated one by one for

each of the control displacements, according to the longitudinal displacements of the

piezoelectric actuators. The closed loop velocities vm are found by combining equations

5.11, 5.12 and 5.14 to give

vm =
(
Ymd + YcDscHiff (I−DscHiff)−1 Gsc

)
fd (5.15)

which is the analogue of equation 5.5 in terms of the structural response.

5.5 Numerical simulations of IFF control

In this section simulations of IFF control are presented. The system responses are

obtained by the dynamic stiffness method described in chapter 2. In a way similar

to the procedure described in chapter 4, the actuator properties are not considered in

the model for simplicity of the simulations. The disturbance force is applied at joint

4 in the y direction for the frequency range 20 Hz - 1 kHz. Exhaustive simulations

were performed for all possible positions to place a single actuator in the structure, the

behaviour of the cost function for different values of feedback gain, the placement of

the actuator and the stability and performance of the controller regarding the influence

of SWM considered in the following sections. The use of two actuators is considered

in section 5.7.1, including the stability analysis of multiple actuators.

5.5.1 One control actuator

For one control actuator implementing IFF, the feedback control Hiff can be written

as

Hiff =
H

jω
(5.16)

where, H is a constant gain given in m/N. The results in figure 5.5 show the behaviour

of the sensed force in the closed loop with the actuator in position [17-20]. As the
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feedback gain h increases, the force fs decreases, and in the limit of H →∞, fs → 0.

The interest, however, is to minimize the cost function J which comprises the sum of

the squared velocities of the vector vm. It is then necessary to choose H in such a way

that Jm is minimum. Figure 5.6 shows the sum of frequency points in the bandwidth

20 Hz - 1 kHz using 1 Hz of frequency resolution for the effort measured in sensor,

while 5.7 shows the behaviour of the cost function for the same values of feedback

gain. As an example, the attenuation in the cost function J as a function of the IFF

gains is shown in figure 5.8 for some of the positions for a single actuator in the lattice

structure. It can be seen that, although the attenuation in the cost function is small,

there is a maximum for each position for placing a single actuator. Higher values of

feedback can cause enhancement in the cost function

Because of the SWMs it is not possible to identify a good position for placing actuators

using, for instance, the approach discussed in the work of Preumont (the fraction of

modal strain) [122], which is discussed in section 5.6 of this chapter. For this reason,

exhaustive simulations were performed on the lattice structure to find optimal positions

for placing a single actuator. The results of the maximum attenuation in the cost

function (for the frequency range 20 Hz - 1 kHz) obtained for each position in the

structure are shown in figure 5.9 while the results of figure 5.10 shows the respective

values of feedback gain that give these maximum attenuation. In both figures the joint

number of the members can be identified in the appendix G. The conclusion from these

results is that the maximum attenuation obtained is smaller than 3 dB, which can be

considered small compared to the 9.08 dB achieved by feedforward control.

5.5.2 Stability analysis

In this section the Nyquist stability criterion is used to check the stability of IFF control

described in the previous sections for a single control actuator. This analysis is based

on the complex open loop frequency response of the controller DscHiff , which is stable

in the open loop, whose polar plot should not enclose the point (-1,0) in the complex

plane if the system is to be stable [57]. The stability analysis has been performed for all

the positions considered in the previous section. A typical Nyquist diagram is shown in

figure 5.11, for an actuator placed at member [17-20]. If the actuator was massless, the
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system would be unconditionally stable, since the controller could only dissipate power

[10]. The actuator mass influences the longitudinal natural frequency of the actuator

at which the phase is greater than 90◦, as can be seen in figure 5.12. The longitudinal

natural frequency of the actuator, however, is much higher than the frequency range of

interest in this case. The Nyquist plot in figure 5.11 has been plotted for the frequency

range 20 Hz - 1 kHz, while the result in figure 5.12 has been plotted in the frequency

range 20 Hz - 5.9 kHz, and the longitudinal natural frequency of the actuator in this

case is 5650 Hz.

5.6 The control of long wavelength modes

In this section, the case of controlling only LWM of the lattice structure is considered.

For structures that have only long wavelength modes in the frequency range of interest,

the selection of actuator position for feedback control has been described by Preumont,

[10]. The modelled the structure using the finite element method, where structural

members were modelled as truss elements (considering only longitudinal motion). The

equation of motion for such undamped systems, in the frequency domain is given by

(
−ω2M + K + Ka

)
q = f (5.17)

where, M is the mass matrix, K is the stiffness matrix of the system without the

stiffness of the actuator and Ka is the stiffness matrix of the actuator given in global

coordinates; q and f are the displacement and force vectors, respectively. The natural

frequencies and mode shapes of the system are found by solving the following eigenvalue

problem

(
−ω2

i M + (K + Ka)
)
φi = 0 (5.18)

where φi is the eigenvector (mode shapes) and ωi is the eigenvalue (natural frequency).

According to reference [10], the positions for placing actuators can be found using the

fraction of modal strain energy given by
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vi =
φT

i BT
a TT

a KaTaBaφi

φT
i (K + Ka)φi

(5.19)

where, vi is the fraction of modal strain which can be seen as a ratio between the

potential energy in the a member and the total potential energy in the system for the

mode shape i. In practice, the value of vi works as a controllability and observability

index, where large values of v indicates regions in the structure where actuators should

be placed for high control authority for a certain mode. To illustrate this, the fraction

of modal strain energy vi is calculated for the first six LWM of the structure using the

finite element method and considering only the longitudinal motion of the members.

These results are shown in figures 5.13-5.18 where the structural members plotted

with thicker lines indicate the places with larger modal strain energy for that mode.

Feedback control of each of these modes independently is described in [120, 121]. in

which at least one actuator is used to control each of mode of the structure.

5.7 The influence of SWM in the performance of IFF control

To verify the influence of SWM in the performance of feedback control, numerical

simulations where performed and the results are discussed in this section. The member

[17-20] has again been chosen as the actuator position since this location has the largest

value of the fraction of modal strain for the first bending mode (bending in the z

direction). The analysis was carried out for values of the ratio

µ =
(I/l2BS)

(I/l2BS)nominal

(5.20)

with µ varying from 1 to 25. The SW natural frequencies varies of the square root

of the ratio (I/l2BS) and in this case it is possible to shift the SW natural frequencies

to higher frequencies in such a way that βi > 1. This means that the first SWM will

occur at frequencies greater than those of the i-th LWM.

For each of the values of µ, the maximum attenuation in the cost function (in the

frequency range 20 Hz - 1 kHz) was found by exhaustive search of the feedback gains.

The results of this simulation are shown in figure 5.19, that compares the attenuation

due to IFF control with that obtained with feedforward control using the same actuator.
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It is clear that for low values of µ, the low frequency response of the structure is

dominated by SWMs and the performance of the feedback controller is small. For

values of µ > 5, the low frequency response of the structure is dominated by LWMs

as can be seen in figure 5.20 where the cost function has been plotted for µ = 10, for

example. The low frequency peaks in the cost function are identified according to the

modes shown in figure 5.21. The IFF control can then control the peak of the cost

function associated with the first bending mode and have also some control authority

of the peak associated with the first torsional LWM as shown in figure 5.22. This result

shows also that the attenuation at high frequencies is small.

The detail of the low frequency range is shown in figure 5.23 where these results have

also been compared with the results of feedforward control. In figure 5.24, a similar

result is given for the system with nominal properties. The results of figure 5.25 can

be used to help explain these differences in the performance, where the attenuation in

this frequency range (20 Hz - 100 Hz) has been plotted as a function of the IFF gain.

It can be seen that for the case without SWM, the attenuation of in the cost function is

greater than that for the case with SWM. The values of feedback gain are also slightly

different.

To complement this analysis, simulations were performed for three other regions of the

lattice structure; (close to the positions where disturbance force is applied (joint 4),

close to the joints 31, 32 and 33 and in the middle of the lattice structure). A number

of structural members have been chosen in these regions as a position to place a single

actuator positions and the attenuation values have been obtained for two values of the

ratio µ as described bellow in terms of the SW and LW natural frequencies for bending

and torsion of the structure

• µ = 1, (ω1)SWM < (ω1)LWM , bending, (ω1)SWM < (ω1)LWM , torsional

• µ = 10, (ω1)LWM > (ω1)LWM , bending, (ω1)LWM > (ω1)LWM , torsional

This means that for vales of µ = 10, the first SW natural frequency is greater than the

first LW bending natural frequency and the first LW torsional natural frequency. For

nominal values of (I/l2BS) (µ = 1), the first SW natural frequency is smaller than both

LW bending and torsional natural frequencies. Figures 5.26, 5.28 and 5.30 illustrate
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the positions where IFF control was implemented. The comparison for the attenuation

in the cost function in the frequency range 20 Hz - 1 kHz (calculated using equation

4.18) are shown in figures 5.27, 5.29 and 5.31. These figures shows that there is a

increase in the performance of the IFF control when the SWM modes are shifted to

higher frequencies for the members that are placed at a position with large fraction

of modal strain. This can be seen in figure 5.31, where those positions have large

control authority to control the first bending and torsional LWM and at position [04-

08] of figure 5.27, where this member have large control authority to control the second

bending LWM.

5.7.1 Two control actuators

In this section the effect of decentralized integral force feedback control is investigated

using two actuators. As the influence of SWM reduces the performance of the IFF

control, the implementation of IFF with two control actuators is simulated for a system

with ratio µ = 10. The values of the two feedback gain were found by exhaustive search

in a range of values based in the attenuation of the cost function for the frequency range

20 Hz - 100 Hz. The first actuator is placed in the position of member [16-20] and the

second actuator is placed in the position of member [17-20] as shown in figure 5.32.

Figure 5.33 shows the attenuation in the cost function for a range of values of the

feedback gains in both controllers. The values of the feedback gains that produce the

optimum attenuation in the cost function used in the simulations were H1 = 5.83×10−5

m/N and H2 = 1.25× 10−5 m/N. The cost function without control is compared with

the results of IFF and feedforward control in figure 5.34, and the detail in low frequency

is shown in figure 5.35. The attenuation in the frequency range 20 Hz - 100 Hz obtained

by the IFF control is 7.4 dB while for feedforward control, the attenuation is 12.6 dB.

5.7.2 Stability analysis for multiple actuators

The analysis of stability of multiple control actuators can be assessed by the graphi-

cal techniques similar to the Nyquist criterion described in a previous section of this

chapter [130]. This can be done by considering the roots of the controller characteristic
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equation. According to the Nyquist stability criteria, a multi-channel control systems

is stable if it is open loop stable and the plot of det [I−DscHiff ] = 0 does not encircle

the point (-1,0) in the complex plane as the frequency goes from −∞ to +∞. This can

also be evaluated by examining the individual eigenvalues [DscHiff ] 1which must then

be correctly ordered, [131]. According to [130], the generalized (MIMO) Nyquist the-

orem is given as: Let Pol denote the number of open-loop unstable poles in a transfer

function L(s). The closed-loop system with loop transfer function L(s) and negative

feedback is stable if and only if the Nyquist plot of det(I + L(s))

1. makes Pol anti-clockwise encirclements of the origin, and

2. does not pass through the origin.

where, ”Nyquist plot of det(I + L(s))” means the image of det(I + L(s)) as s goes

clockwise around the Nyquist D-contour. The prof of the theorem is given in the

same reference [130]. The polar plots of the eigenvalues for the two controllers placed

at members [16-20] and [17-20] are shown in figure 5.36. It can be seen that for the

feedback gains used, the circles do not enclose the instability point.

5.8 The analysis of power in IFF control

In this section, the behaviour of energy in the lattice structure when IFF control is

applied to reduce the cost function is considered using the analysis of power described

in chapters 2 and 3. Exhaustive simulations where performed for all positions to place

a single actuator in the lattice structure. The optimal values of gain for IFF control

have been used considering the attenuation in the cost function for the frequency range

20 Hz - 1 kHz. As discussed by Preumont [49], this type of active control strategy can

only dissipate power (for frequencies different from that of the longitudinal natural

frequency of the actuator). This can be seen in the results shown in figure 5.37. This

figure is similar to the results shown in the figure 4.15 of chapter 4, where

• pd(in)without control is the power from the disturbance source before IFF control is

applied

134



Chapter Five 5.9. Concluding Remarks

• pd(in)with control is the power from the primary disturbance after IFF control is

applied

• pc is the power provided/dissipated from the control sources

All the results in figure 5.37 are normalized to pd(in)without control. Figure 5.37(a) shows

the power from the disturbance sources after IFF control is applied to the system,

5.37(b) shows the total power ([pd(in)with control+pc]) when IFF control is applied to the

system and 5.37(c) shows the power from the control forces pc, which are all negative.

It can be seen that the behaviour of IFF control is purely dissipative. The power from

the disturbance source is not affected much by action of the feedback control. The

results of figure 5.38 shows the typical power dissipated by the IFF controller as a

function of the frequency when control is applied at member [17-20] for a structure

with ratio µ = 10 ((I/l2BS) = 10(I/l2BS)nominal). The total power input in the system

(pd(in)with control + pc) after control is applied is compared with the power input in the

system before control is applied in figure 5.39 showing also the low frequency detail.

It can be seen, there is a reduction in the peaks associated to the first bending LWM

as the actuator is placed at member [17-20].

5.9 Concluding Remarks

In this chapter, integral force feedback has been considered as a strategy for control

of vibration in the lattice structure. It has been shown that the performance of this

strategy of active control can be limited if a frequency band has SWMs. The optimal

placement for actuators using the fraction of modal strain can only be used to control

LWMs and it is necessary at least one control actuator per each mode to be controlled.

It has been shown that the performance of the active control is improved when SWM

are shifted to higher frequencies changing the ratio (I/l2BS) and placing the actuator

according to the index of fraction of modal strain. It has been also shown that the

behaviour of the IFF control is purely dissipative, where the power from the disturbance

sources are not affected much the action of the controller, but the total power is reduce

due to the enhancement of the dissipation of energy in the active member.
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Figure 5.1: A block diagram describing the basic elements of feedback control.
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Figure 5.2: A block diagram describing the elements of feedback control including the mea-
sured velocities vs and the objective velocities vm.
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Figure 5.3: A diagram describing force feedback control in a structure with a piezoelectric
actuator attached.
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Figure 5.4: A block diagram describing the elements of force feedback control.
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Figure 5.5: The measured force fs normalized by the disturbance force fd for different values
of gain. The dashed line is for h = 4.17×10−5 m/N, the thin line is for h = 3.75×10−4 m/N
and the thick line is for h = 7.92× 10−4 m/N.
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Figure 5.6: The sum of the sensed force effort in the frequency range 20 Hz - 1 kHz (using
1 Hz of frequency resolution) as a function of the IFF gain. Actuator is placed at member
[17-20].

Figure 5.7: The sum of the cost function in the frequency range 20 Hz - 1 kHz (using 1 Hz
of frequency resolution) as a function of the IFF gain. Control is applied at member [17-20].
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Figure 5.9: The maximum attenuation in the cost function for each position for placing a
single actuator in the structure for the frequency 20 Hz - 1 kHz using 1 Hz of frequency
resolution. dB ref. 1 m2/Ns2. The actuator position are represented by numbers which are
identified in the appendix G.
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function shown in figure 5.9. The members are represented by numbers which are identified
in the appendix G.
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Figure 5.11: The real and imaginary part of the of loop transfer function DscHiff when control
is applied at member [17-20].
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Figure 5.13: The first mode of the lattice structure obtained by the finite element method
considering only longitudinal motion of the structural members. The structural members
plotted with thicker lines correspond to the positions with higher indexes of fractional strain
energy for that mode.
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Figure 5.14: The second mode of the lattice structure obtained by finite element method
considering only longitudinal motion of the structural members. The structural members
plotted with thicker lines correspond to the positions with higher indexes of fractional strain
energy for that mode.
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Figure 5.15: The third mode of the lattice structure obtained by finite element method
considering only longitudinal motion of the structural members. The structural members
plotted with thicker lines correspond to the positions with higher indexes of fractional strain
energy for that mode.
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Figure 5.16: The fourth mode of the lattice structure obtained by finite element method
considering only longitudinal motion of the structural members. The structural members
plotted with thicker lines correspond to the positions with higher indexes of fractional strain
energy for that mode.
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Figure 5.17: The fifth mode of the lattice structure obtained by finite element method consid-
ering only longitudinal motion of the structural members. The structural members plotted
with thicker lines correspond to the positions with higher indexes of fractional strain energy
for that mode.
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Figure 5.18: The sixth mode of the lattice structure obtained by finite element method
considering only longitudinal motion of the structural members. The structural members
plotted with thicker lines correspond to the positions with higher indexes of fractional strain
energy for that mode.
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Figure 5.19: The attenuation in the cost function as function of the ratio µ =
(I/l2BS)/(I/l2BS)nominal when control is applied at member [17-20]. The dots correspond
to feedforward control and the stars correspond to the integral force feedback control. As for
values of µ > 2.6 the first SWM occurs at frequencies higher than that of the first bending
LWM. For values of µ > 15, the first SWM occurs at frequencies higher than that of the
second bending LWM.
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Figure 5.20: The cost function calculated using the dynamic stiffness method for the ratio
µ = 10. The long wavelength modes (a), (b) and (c) are illustrated in figure 5.21. dB ref. 1
m2/Ns2
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Figure 5.21: The first three mode mode shapes of the lattice structure with ratio µ = 10
calculated by finite element method.
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Figure 5.22: The cost function plotted in the frequency range 20 Hz - 1 kHz for µ = 10,
where the dashed line is the without control and the thin line is with IFF control applied at
member [17-20]. dB ref. 1 m2/Ns2
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Figure 5.23: The cost function plotted in the frequency range 20 - 100 Hz for the ratio µ = 10,
where the thin line is without control, dashed line is with IFF control and the thick line is
with feedforward control. dB ref. 1 m2/Ns2

20 30 40 50 60 70 80 90 100
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

Frequency [Hz]

d
B

Figure 5.24: The cost function plotted in the frequency range 20 Hz - 100 Hz for the nominal
ratio (I/l2BS), where the thin line is without control, dashed line is with IFF control and the
thick line is with feedforward control. dB ref. 1 m2/Ns2
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Figure 5.25: The attenuation in the cost function for different values of IFF control gains.
The thin line is for the system with nominal properties and the thick line is for the system
with (I/lBS) = 10(I/lBS)nominal.
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Figure 5.26: The lattice structure and the joint numbering scheme. Members with thicker
lines indicate the region close to the disturbance where integral force feedback control is
applied for figure 5.27.
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Figure 5.27: The overall attenuation obtained with the integral force feedback control in
the frequency range 20 Hz - 1 kHz calculated when active control is applied close to the
disturbance source. (a) for the nominal properties of the structure, (b) for values of µ = 10
((I/lBS) = 10(I/lBS)nominal).
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Figure 5.28: The lattice structure and the joint numbering scheme. Members with thicker
lines indicate the region far from the disturbance where integral force feedback control is
applied for figure 5.29.
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Figure 5.29: The overall attenuation obtained with the integral force feedback control in the
frequency range 20 Hz - 1 kHz calculated when active control is applied at actuator positions
far from the disturbance source. (a) for the nominal properties of the structure, (b) for values
of µ = 10 ((I/lBS) = 10(I/lBS)nominal).
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Figure 5.30: The lattice structure and the joint numbering scheme. Members with thicker
lines indicate the region in the middle of the lattice where integral force feedback control is
applied for figure 5.31.
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Figure 5.31: The overall attenuation obtained with the integral force feedback control in the
frequency range 20 Hz - 1 kHz calculated when active control is applied at actuator positions
in the middle of the lattice structure. (a) for the nominal properties of the structure, (b) for
values of µ = 10 ((I/lBS) = 10(I/lBS)nominal)
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Figure 5.32: The lattice structure and the position of the two actuators which are highlighted
with thicker lines.
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Figure 5.33: The attenuation in the cost function in the frequency range 20-100 Hz as function
of the IFF gain for two control actuators placed at member [16-20] (actuator 1) and at member
[17-20] (actuator). Results correspond to a system with µ = 10.
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Figure 5.34: The cost function without control (thin line), and with control applied at mem-
bers [16-20] and [17-20] for a structure with the ratio µ = 10, where IFF control is the dashed
line and feedforward control is the thick line. dB ref. 1 m2/Ns2
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Figure 5.35: The low frequency detail of the results shown in figure 5.34, for cost function
without control (thin line), and with control applied at members [16-20] and [17-20] for a
structure with the ratio µ = 10, where IFF control is the dashed line and feedforward control
is the thick line. dB ref. 1 m2/Ns2

156



Chapter Five 5.9. Concluding Remarks

-2 0 2 4 6 8 10 12 14 16 18
-6

-4

-2

0

2

4

6

8

10

12

Real

Im
a

g

(-1,0)

-2 -1 0 1 2 3 4 5 6 7 8
-3

-2

-1

(-1,0)
0

1

2

3

4

5

6

Real

Im
a
g

(a) (b)

Figure 5.36: The real and imaginary parts of the eigenvalues of DscHiff for the frequency
range 20 Hz - 1 kHz. The actuators were placed at members [16-20] and [17-20] for a structure
with the ratio µ = 10.
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Figure 5.37: The sum of power in the frequency range 20 Hz - 1 kHz (using 1 Hz of frequency
resolution). (a) The bars indicate εd = [pd(in)with control/pd(in)without control] when feedforward
control is applied for each member position in the lattice structure. (b) The bars indicate
εt = [(pd(in)with control + pc)/pd(in)without control] when feedforward control is applied for each
member position in the lattice structure. (c) The bars indicate εc = [pc/pd(in)without control].
Members are identified according to their joint numbers in the appendix G.
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Figure 5.38: The power dissipated by the IFF controller as a function of the frequency.
Actuator placed at position [17-20] for the structure with ratio µ = 10. The figure also shows
the low frequency detail.
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Figure 5.39: The total power input into the system by the disturbance source as a function
of the frequency for the structure with ratio µ = 10. The dashed line is without control and
the thick line is with IFF control applied at member [17-20].
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Conclusions and recommendations for further work

6.1 Conclusions

The aim of the work presented in this thesis was to describe the factors controlling the

performance of two strategies of active vibration control for a lattice structure similar

to those used in space applications. Previous analysis tended to emphasise the long

wavelength modes of such structures, in which the whole structure bends or twists.

The structure considered here has also many short wavelength modes (∼ 700 modes),

in the frequency range considered 20 Hz - 1 kHz. These SW modes occur when the

length of the members is a multiple of half wavelength of a bending wave.

Comparison with experimental data shows that the structural dynamic response can

be predicted with some accuracy with the dynamics stiffness method, by considering

that structural members are subject to longitudinal, torsional and bending motion.

When modelling the individual structural elements, the use of exact solutions of wave

equations has shown to be preferable in comparison to the modal summation method.

Numerical analysis shows that SW modes occur in groups over small frequency ranges

(clusters). The upper and lower limits of these frequency ranges can be estimated by

calculating the bending natural frequencies of a beam with equivalent properties for

the boundary conditions pinned-pinned and clamped-clamped, respectively.

Some of the parameters that control the frequency range where LW and SW modes

occur are different and they are identified through an analysis that compares the first

SW natural frequency with a certain LW natural frequency. The results of this analysis

shows that are three parameters influencing the structural response concerning SW and

LW modes. They are the number of bays in the structure, the length of the structural

members and the ratio between the second moment of area and the cross sectional area

of the members (I/S). The non-dimensional parameter (I/l2BS) can then be altered to

adjust the natural frequencies of SWM since it has lower influence on the LW modes.

The structural response of the system is represented in this thesis as the sum of linear

velocities of three joints at one end of the structure, while the disturbance forces are
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considered to be applied at an opposite end. By changing the non-dimensional ratio

(I/l2BS), it is possible to shift the SW natural frequencies. This can be achieved by

changing the shape of the cross sectional area of the members from solid to a hollow

circular cross section, for instance. Although the frequency response of the structure

can be quite different as the ratio (I/l2BS) changes, the average level of the frequency

response does not vary significantly.

The analysis of the energy showed that the principal mechanism of energy dissipation

occurs by bending of the structural members. This becomes less predominant in the

gaps between the clusters of SW modes where dissipation by longitudinal motion of the

members is equivalent or higher than the dissipation by bending. Because of the way

the members are excited, only a small percentage of the energy is dissipated by torsion

of the structural members. The mechanisms of energy dissipation can vary as the

SW modes are shifted to higher frequencies. The dissipation of energy by longitudinal

motion of the structural members becomes more predominant in this situation.

In this thesis, two strategies of active control have been analysed. Feedforward con-

trol is used for applications where external reference signal exists for the disturbance

sources. This is particularly suitable for controlling disturbances originated from ro-

tating equipment, such as reaction wheels, frequently found in space applications.

The results of the simulations have shown that good positions for placing actuators

in this case are concentrated around the members close to the position where the

disturbance source is applied. The analysis of power shows that, on average, the

feedforward control forces input energy into the system, but it also reduces the energy

input by the disturbance source by actively modifying the system input impedance.

The frequency averaged attenuation in the frequency range 20 Hz - 1 kHz achieved with

one, two and three actuators were 7.8, 16.7 and 25.6 dB, respectively, for the structure

considered in this thesis. The numerical simulations where also used to demonstrate

that the overall attenuation obtained by feedforward control does not depend much on

whether SW modes are present or not, as this strategy of active control is based on the

minimization of wave amplitudes at certain positions of the structure by the principle

of superposition.

In contrast to feedforward control, the feedback control strategy does not require any
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external reference signal, which makes it suitable for applications involving random or

transient disturbances. The type of feedback control considered in the thesis is the

Integral force feedback. This form of active control has previously been considered

in the control of LW modes of lattice structures. This thesis extends the analysis to

the cases where SWM are present in the frequency range of interest, considering the

performance and stability of the control system. Numerical simulations showed that

the performance of IFF is affected if a frequency range has SWMs. In this case, the

performance of the feedback control in the system response is localized.

The general conclusion of the thesis is that the design of lattice structures should

take into account the effects of SWM in the dynamics of the structure, specifically

when a control strategy is required to control vibration in the system. Vibration

levels associated with SWMs can be reduced by feedforward control. Feedback control,

however, would have low performance for the situations described in this thesis.

6.2 Recommendations for further work

The work developed in this thesis has been based on numerical simulations using a

mathematical model obtained by dynamic stiffness method and supported by compar-

ison with experimental tests. The simulations of feedforward control assume a perfect

plant model. As the design of optimum feedforward control involves inversion of mo-

bility matrices, errors in the measurement of these mobilities can lead to numerical

problems in the calculation of optimum feedforward control. In practice for high order

uncertain systems such as this, the system response will not be known perfectly. Inves-

tigation of the effects, stability and performance when such a system is implemented

be a good direction for further work. Experimental work involving feedforward and

feedback control or a combination of both is also a recommended direction for future

work. The design of the lattice structure would, however, need to take into account

whether SWMs occur or not in the frequency range of interest for the performance of

feedback control strategies.
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The dynamic stiffness matrix for a free-free beam

in space

In this Appendix, the dynamic stiffness matrix for a beam under free-free boundary

conditions is derived from the solution to equation of motion for the beam. The starting

point is the solution for longitudinal and torsional motion given in equation 2.4, which

is repeated here for convenience, it is

Q(x) = Are
−jkx + Ale

jkx (A.1)

equation A.1 can also be written in terms of trigonometric functions as

Q(x) = A sin kx+B cos kx (A.2)

A.1 The dynamic stiffness for the longitudinal vibration

Considering the beam in figure A.1 subject to the harmonic force per unit length ap-

plied at the joint 0 where the force F is a harmonic force of the type Fejωt and the

wavenumber for the longitudinal motion of the beam is kl = ω(ρ/E)1/2. The bound-

ary conditions for the longitudinal motion of the beam under the free-free boundary

condition with a force applied at one end can be written as

Q′(0) = − F

ES
(A.3)

and

Q′(L) = 0 (A.4)

where ()′ denotes ∂()/∂x. By applying equation A.3 to A.2, the value of the constant

A is given by

A = − F

klES
(A.5)
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Similarly, the value of B can be found by applying equation A.4 to A.2

B = − F

kES

cos kll

sin kll
(A.6)

If equations A.5 and A.6 are now applied to equation A.2, the motion at ends 0 and 1

can be expressed as

Q(0)

F (0)
=

cot kll

kES
(A.7)

and
Q(1)

F (0)
=

csc kll

kES
(A.8)

The results of equation A.7 and A.8 are known as the point receptance and the transfer

receptance, respectively. Using the reciprocity principle, the forces and displacements

at both ends of the beam can be written in matrix form as

 Q(0)

Q(1)

 =

 − cot kll
klES

− csc kll
klES

− csc kll
klES

− cot kll
klES

 F (0)

F (1)

 (A.9)

The receptance matrix can be inverted to give the dynamic stiffness matrix for the

longitudinal motion of the beam as

 F (0)

F (1)

 =

 −klES cot kll klES csc kll

klES csc kll −klES cot kll

 Q(0)

Q(1)

 (A.10)

A.2 The dynamic stiffness for the torsional vibration

The dynamic stiffness matrix for torsional vibration can be found in a similar manner

to that described by the longitudinal vibration in the beam. The excitation at one

end is, however, assumed to be a moment per unit length of M/GJ (where M is

a hamonic moment of the type Mejωt) and the displacement Q is now an angular

displacement. The wavenumber for torsional vibration in this case is given by kt =

ω(ρ/G)1/2 (considering members with circular cross sectional area). The receptance

matrix for torsional vibration is given by
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 Q(0)

Q(1)

 =

 − cot ktl
ktGJ

− csc ktl
ktGJ

− csc kll
ktGJ

− cot ktl
klGJ

 M(0)

M(1)

 (A.11)

and by inversion of this matrix, the dynamic stiffness matrix for torsional vibration is

given by

 M(0)

M(1)

 =

 −ktGJ cot ktl ktGJ csc kll

ktGJ csc kll −ktGJ cot kll

 Q(0)

Q(1)

 (A.12)

A.3 The dynamic stiffness for bending vibration

The solution to the equation of motion for the bending vibration of an Euler-Bernoulli

beam can be written as

Q(x) = Bre
−kx + Are

−jkx +Ble
kx + Ale

jkx (A.13)

Equation A.13 can also be written in terms of trigonometric and hyperbolic functions

as

Q(x) = A sin kbl +B cos kbl + C sinh kbl +D cosh kbl (A.14)

where kb = ω1/2 (ρS/EI)1/4 is the bending wavenumber. Considering the beam shown

in figure A.2 with free-free boundary conditions, the receptances for the beam are

calculated first for a force per unit length applied at end 0, where F has the form

Fejωt and second for a moment per unit length at end 0, where M has the form Mejωt.

The procedures for finding the terms of the receptance matrix are similar to that of the

longitudinal vibration of the beam, discussed in the previous section. The receptance

matrix for bending vibration is given by [[66, 72, 71]


Q(0)

Q′(0)

Q(1)

Q′(1)

 =


−Q11 −P Q12 V

−P K11 −V K12

Q12 −V −Q11 P

V K12 P K11




F (0)

M(0)

F (1)

M(1)

 (A.15)
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where

K11 = N (cos (kbl) sinh (kbl) + sin (kbl) cosh (kbl)) (A.16a)

K12 = N (sin (kbl) + sinh (kbl)) (A.16b)

P = N
sin (kbl) + sinh (kbl)

kb

(A.16c)

V = N
cos (kbl)− cosh (kbl)

kb

(A.16d)

Q11 = N
cos (kbl) sinh (kb)− sin (kbl) cosh (kbl)

k2
b

(A.16e)

Q12 = N
sin (kbl)− sinh (kbl)

k2
b

(A.16f)

N =
EIk3

b

(cos (kbl) cosh (kbl)− 1)
(A.16g)

The mathematical details for the calculation of the receptance matrix for bending

vibration in the beam can be found in the reference [66]. The matrix representing the

bending dynamic stiffness for a free-free beam is found by inversion of the matrix in

equation A.15 to give


F (0)

M(0)

F (1)

M(1)

 =


−K11 −P K12 V

−P Q11 −V Q12

K12 −V −K11 P

V Q12 P Q11




Q(0)

Q′(0)

Q(1)

Q′(1)

 (A.17)

A.4 The dynamics stiffness for the free-free beam in space

Considering figure A.3 showing the numbering scheme for the degrees of freedom and

the forces/moments applied at the ends of a free-free beam

The displacement q and force f vectors of this beam are related by the dynamic stiffness

matrix D as

qD = f (A.18)

The dynamic stiffness matrix is given by
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D
=

                                 ψ
1
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0
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0

0
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−
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)
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0
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0

σ
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σ
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0
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0
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0

0
0

P
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−
K

1
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)
0
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sy
m
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ri
c

σ
2

0
0

Q
1
1
(y

)
0

Q
1
1
(z

)

                                 

(A
.1

9)
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The elements of the dynamics stiffness are given by

ψ1 = ωS
√
Eρ cot kll (A.20a)

ψ2 = −ωS
√
Eρ csc kll (A.20b)

σ1 = ω
√
GJIoρ cot ksl (A.21a)

σ2 = −ω
√
GJIoρ csc ksl (A.21b)

K11 = N (cos (kbl) sinh (kbl) + sin (kbl) cosh (kbl)) (A.22a)

K12 = N (sin (kbl) + sinh (kbl)) (A.22b)

P = N
sin (kbl) + sinh (kbl)

kb

(A.22c)

V = N
cos (kbl)− cosh (kbl)

kb

(A.22d)

Q11 = N
cos (kbl) sinh (kb)− sin (kbl) cosh (kbl)

k2
b

(A.22e)

Q12 = N
sin (kbl)− sinh (kbl)

k2
b

(A.22f)

N =
EIk3

b

(cos (kbl) cosh (kbl)− 1)
(A.22g)
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Figure A.3: The local coordinates of degrees of freedom numbering scheme and the forces
numbering scheme for a beam in space
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Appendix B

Coordinate Transformation Matrix

In this Appendix, the coordinate transformation matrix is considered, where this matrix

is used in chapter 2 for the modelling of lattice structure. A beam in space and its

local coordinate system can be defined by the location of the ends 0 and 1 in the global

coordinate system XYZ shown in figure B.1. The length L of the i-th beam is then

defined by

Li =
((
p1

X − p0
X

)2
+

(
p1

Y − p0
Y

)2
+

(
p1

Z − p0
Z

)2
)1/2

(B.1)

where p1
X is, for instance, the coordinate in the X axis for the end 1. The coordinate

transformation matrix can be calculated from the direction cosines C (the direction

cosines are the cosines of the Euler angles of a vector), defined as

CX =
(p1

X − p0
X)

Li

, CY =
(p1

Y − p0
Y )

Li

, CZ =
(p1

Z − p0
Z)

Li

(B.2)

The coordinate transformation matrix T of the i-th beam, is given by [81, 132]

Ti =


CX CY CZ

−CXCY cos α+CZ sin α
CXZ

CXZ cosα −CY CZ cos α+CX sin α
CXZ

−CXCY sin α+CZ cos α
CXZ

−CXZ sinα CY CZ sin α+CX cos α
CXZ

 (B.3)

where, CXZ = (C2
X + C2

Z)
1/2

. α is the angle of rotation about the x axis. This relation

is valid for all situations except when CX = CZ = 0 (beam oriented vertically). For

this situation, the following matrix can be used,

Ti =


0 CY 0

−CY cosα 0 sinα

CY sinα 0 cosα

 (B.4)
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Figure B.1: Global and Local Coordinate Systems
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The finite element matrices

In this appendix, the finite element mass and stiffness matrices are given for two dif-

ferent types of finite element. These matrices are available in many finite element text

books, such as , and are presented here for easy reference.

The finite element matrices for a Truss element (considering only the longitudinal

motion of the members are given

K =
ES

L


1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , M =
ρSL

6


2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 (C.1)

where, K is the stiffness matrix, M is the mass matrix, E is the Young’s modulus,

ρ is the density, l is the element length and S is the cross sectional area. For a

complete finite element, considering longitudinal and torsional motion and bending in

two orthogonal planes (y and z) the stiffness matrix is given by equation C.2 where, G

is the shear modulus, I is the second moment of area and J is the polar second moment

of area. The mass matrix for the respective complete element is shown in equation C.3.

173



Chapter C

K
=
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                                 
(C

.2
)
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M
=

                                 ρ
S

l
3

0
0

0
0

0
ρ
S

l
6

0
0

0
0

0

1
5
6

4
2
0
ρ
S
l

0
0

0
2
2

4
2
0
ρ
S
l2

0
5
4

4
2
0
ρ
S
l

0
0

0
−

1
3

4
2
0
ρ
S
l2

1
5
6

4
2
0
ρ
S
l

0
−

2
2

4
2
0
ρ
S
l2

0
0

0
5
4

4
2
0
ρ
S
l

0
1
3

4
2
0
ρ
S
l2

0

J 3
S

0
0

0
0

0
J 6
S

0
0

4
4
2
0
ρ
S
l3

0
0

0
−

1
3

4
2
0
ρ
S
l

0
3

4
2
0
ρ
S
l3

0

4
4
2
0
ρ
S
l3

0
1
3

4
2
0
ρ
S
l

0
0

0
3

4
2
0
ρ
S
l3

ρ
S

l
3

0
0

0
0

0

1
5
6

4
2
0
ρ
S
l

0
0

0
2
2

4
2
0
ρ
S
l2

1
5
6

4
2
0
ρ
S
l

0
−

2
2

4
2
0
ρ
S
l2

0

sy
m
m
et
ri
c

J 3
S

0
0

4
4
2
0
ρ
S
l3

0

4
4
2
0
ρ
S
l3

                                 

(C
.3

)
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Introduction to power analysis

In this Appendix, a introduction to the analysis of power in mechanical systems is

considered. Power is the rate at which a work is performed. The SI unit of power is

the Watt [W]. Power is usually seen as an energy flow, which is equivalent to the rate

of change of energy in a system, or in other words, it is the rate at which a a work is

done. It is defined

P =
dW

dt
=
dE

dt
(D.1)

where, W is work and E is energy. The average power is the average amount of work

done or energy transfered per unit time. Instantaneous power is then the limiting value

of the average power as the time interval ∆t approaches zero

P = lim
∆t→0

∆W

∆t
(D.2)

Power is a quantity usually used in the electrical engineering field, but its concepts

have been used for some time to describe vibrational energy in mechanical systems.

For mechanical systems, work is defined by

W =

∫
f · dq (D.3)

where f is the force and q is the displacement. When the motion is in the same direction

of the force, work is positive. Note that work only exists in the direction that the force

is applied. By differentiating both sides in respect to time, it gives

P (t) = f(t) · v(t) (D.4)

where, v is the velocity. Power is a measure of the in-phase components between

force and velocity. It should be noted, that when dealing in the frequency domain,

with complex values, it is important to consider the phase between the two quantities.
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Assuming harmonic motion,

f(t) = F sin (ωt+ θf ) (D.5)

v(t) = V sin (ωt+ θv) (D.6)

equation D.4 can be re-written as

p(t) = FV sin (ωt+ θf ) sin (ωt+ θv) (D.7)

Using the trigonometric identity

sin (A) sin (B) =
cos (A−B) + cos (A+B)

2
(D.8)

equation D.7 becomes

p(t) =
FV

2

fixed value︷ ︸︸ ︷
cos (θf − θv)−

FV

2

time varying︷ ︸︸ ︷
cos (2ωt+ θf + θv) (D.9)

From equation D.9, the time average power can be calculated for a number of periods

T as

〈p(t)〉T =
1

T

∫ T

0

f(t)v(t)dt

=
FV

2T
cos (θf − θv)

∫ 0

T

dt− FV

2T

0︷ ︸︸ ︷∫ T

0

cos (2ωt+ θf + θv)dt

=
FV

2
cos (θf − θv)

(D.10)

Thus the time average power can be written as

P (ω) =
1

2
{F · V }+

1

2
{F · V ∗} (D.11)

where, F and V are respectively the force and velocity, V ∗ is the complex conjugate of

V . Equation D.11 can also be written in the form
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P (ω) =
1

2
Re {F · V ∗} (D.12)

Because V is the velocity at the position where the force is applied, it can be written

in terms of the point mobility of the system as

Pin =
|F |2

2
Re {Y } (D.13)

Where Y is the point mobility where the force F is applied. Similarly D.13 can also

be defined in terms of the system point impedance as

Pin =
|V |2

2
Re {Z} (D.14)

D.1 Power Analysis in a SDOF system

Consider the SDOF (single degree of freedom) system shown in figure D.1. The equation

of motion of the system in figure D.1 is given by

mq̈(t) + cq̇(t) + kq(t) = f(t) (D.15)

where, m, c and k are respectively the mass, viscous damping coefficient and stiffness

of the system, q and f are, respectively, the displacements and forces acting on the

system. Assuming harmonic motion (f = Fejωt), equation D.15 can be transformed

to the frequency domain to give

Q(ω) =
F

(−ω2m+ jωc+ k)
(D.16)

where the term (−ω2m + jωc + k)−1 is known as the system receptance. The system

mobility Y = Q/F is found by differentiating the receptance in the frequency domain

to give

Y =
jω

(−ω2m+ jωc+ k)
=

1

jωm+ c+ k/jω
(D.17)

And the impedance Z = Y −1 is defined by (jωm + c + k/jω). Using equation D.13,

and the system mobility, it is possible to find that the input power in the single degree
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of freedom is

Pin =
|F |2

2

c

c2 + (ωm+ k/ω)2
(D.18)

The dissipation force that the damper produces is proportional to the velocity of the

system. The dissipation force is defined by

Fdiss = −cV (D.19)

The power dissipated Pdiss by the damping present in the system is then defined by the

in-phase component between the dissipation force and velocity in the system damper.

Pdiss =
1

2
Re {−cV · V ∗} = −|F |

2

2

c

c2 + (ωm+ k/ω)2
(D.20)

The results of equations D.18 and D.20 lead to the conclusion that the total power

input in a system is equal to the power dissipated. This is reasonable since the damper

is the unique dissipative element in the SDOF system. The second conclusion is that,

in theory, power only exists if there are dissipative element in the system.

m

ck

f
q

Figure D.1: Single Degree of Freedom System
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Experimental results

In this section, the detailed results of the experimental test discussed in chapter 2 are

presented. Table E.1 shows the summary of the figures given in this appendix.

Joint Number, Direction Figure Number
4, y E.1
31, x E.2
31, y E.3
31, z E.4
32, x E.5
32, y E.6
32, z E.7
33, x E.8
33, y E.9
33, z E.10

Table E.1: Experimental test results sumary
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Figure E.1: Magnitude and phase of velocity in joint 4, y direction, measurement coherence
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Figure E.2: Magnitude and phase of velocity in joint 31, x direction, measurement coherence

181



Chapter E

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

-200

0

200

P
h
a
s
e
 [
d
e
g
]

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

C
o
h
e
re

n
c
e

M
a
g
n
it
u
d
e

Frequency [Hz]

Figure E.3: Magnitude and phase of velocity in joint 31, y direction, measurement coherence
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Figure E.4: Magnitude and phase of velocity in joint 31, z direction, measurement coherence
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Figure E.5: Magnitude and phase of velocity in joint 32, x direction, measurement coherence
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Figure E.6: Magnitude and phase of velocity in joint 32, y direction, measurement coherence
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Figure E.7: Magnitude and phase of velocity in joint 32, z direction, measurement coherence
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Figure E.8: Magnitude and phase of velocity in joint 33, x direction, measurement coherence
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Figure E.9: Magnitude and phase of velocity in joint 33, y direction, measurement coherence
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Figure E.10: Magnitude and phase of velocity in joint 33, z direction, measurement coherence
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Appendix F

Actuator Properties

In this appendix the properties of the piezoelectric actuator and the power amplifier

are presented. Table F.1 shows the properties of the actuator used in the experimental

tests and shown in figure F.1

Property Value Units
Open-loop travel at 0 to 100 V . . . . . . . . . . . . . . . . 90 µm ±20 %
Push/pull force capacity . . . . . . . . . . . . . . . . . . . . . . 1000/50 N
Torque limit (at tip) . . . . . . . . . . . . . . . . . . . . . . . . . . 0.35 Nm
Electrical capacitance . . . . . . . . . . . . . . . . . . . . . . . . . 9 µF ±20 %
Dynamic operating current coefficient (DOCC) 12.5 µA/ (Hz × µm)
Unloaded resonant frequency (f0) . . . . . . . . . . . . . 6 kHz ±20 %
Standard operating temperature range . . . . . . . . -20 to +80 ◦C
Weight without cables . . . . . . . . . . . . . . . . . . . . . . . . 62 g ±5 %
Length L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 mm ±0.3

Table F.1: Properties of the piezoelectric actuator model P.I. (Physics Instrument) P-841.60.

The properties of the power amplifier used to drive the appropriate voltage to the

piezoelectric actuator are shown in table F.2

Properties Values
Channels . . . . . . . . . . . . . . . . . . 1
Maximum output power . . . 200 W
Average output power . . . . . 30 W
Peak output current . . . . . . . <5 ms 2000 mA
Average output current . . . >5 ms 300 mA
Current limitation . . . . . . . . Short-circuit proof
Voltage gain . . . . . . . . . . . . . . 10 ±0.1
Polarity . . . . . . . . . . . . . . . . . . . Positive
Control input voltage . . . . . -2 to +12 V
Output voltage . . . . . . . . . . . . -20 to +120 V
DC-offset setting . . . . . . . . . . 0 to 100 V at output with 10-turn pot.
Input impedance . . . . . . . . . . 1 MW / 1 nF
Control input sockets . . . . . BNC
PZT voltage output socket LEMO ERA.00.250.CTL
Dimensions . . . . . . . . . . . . . . . One 14T slot wide, 3H high
Weight . . . . . . . . . . . . . . . . . . . . 0.9 kg
Operating voltage Requires E-530/E-531 power supply (E-500/E-501 system)

Table F.2: Function power amplifier properties. Model E-505.00 from Physic Instruments.
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Figure F.1: Geometric details of the actuator used in the experimental tests.
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Appendix G

Numbering Scheme for the Members in the

Structure

This appendix present the members numbering scheme used in some picture and tables

of the thesis identified by their joints number given in the table bellow. The members

are identified in figures G-G according to their categories (longitudinal, batten or di-

agonal).

Joints Member Joints Member Joints Member
[01− 02] 1 [01− 03] 2 [02− 03] 3
[01− 04] 4 [01− 05] 5 [02− 05] 6
[02− 06] 7 [03− 04] 8 [03− 06] 9
[04− 05] 10 [04− 06] 11 [05− 06] 12
[04− 07] 13 [04− 08] 14 [05− 08] 15
[05− 09] 16 [06− 07] 17 [06− 09] 18
[07− 08] 19 [07− 09] 20 [08− 09] 21
[07− 10] 22 [07− 11] 23 [08− 11] 24
[08− 12] 25 [09− 10] 26 [09− 12] 27
[10− 11] 28 [10− 12] 29 [11− 12] 30
[10− 13] 31 [10− 14] 32 [11− 14] 33
[11− 15] 34 [12− 13] 35 [12− 15] 36
[13− 14] 37 [13− 15] 38 [14− 15] 39
[13− 16] 40 [13− 17] 41 [14− 17] 42
[14− 18] 43 [15− 16] 44 [15− 18] 45
[16− 17] 46 [16− 18] 47 [17− 18] 48
[16− 19] 49 [16− 20] 50 [17− 20] 51
[17− 21] 52 [18− 19] 53 [18− 21] 54
[19− 20] 55 [19− 21] 56 [20− 21] 57
[19− 22] 58 [19− 23] 59 [20− 23] 60
[20− 24] 61 [21− 22] 62 [21− 24] 63
[22− 23] 64 [22− 24] 65 [23− 24] 66
[22− 25] 67 [22− 26] 68 [23− 26] 69
[23− 27] 70 [24− 25] 71 [24− 27] 72
[25− 26] 73 [25− 27] 74 [26− 27] 75
[25− 28] 76 [25− 29] 77 [26− 29] 78
[26− 30] 79 [27− 28] 80 [27− 30] 81
[28− 29] 82 [28− 30] 83 [29− 30] 84
[28− 31] 85 [28− 32] 86 [29− 32] 87
[29− 33] 88 [30− 31] 89 [30− 33] 90
[31− 32] 91 [31− 33] 92 [32− 33] 93

Table G.1: The respective joints for each of the structural members of the lattice structure
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Figure G.1: The numbering scheme for the longitudinal members
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Figure G.3: The numbering scheme for the diagonal members
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The influence of periodicity in the dynamics of

lattice structures

A structure is said to be periodic when it has the form of spatially repeated units.

These units are joined together in an identical manner (end-to-end or side-by-side)

to form the whole system. It is well-known that such periodic systems act as wave

filters, having propagation and attenuation zones (PZs and PAs) in the frequency-

wavenumber-domain [34]. Mead [133, 134] has made an important contribution to this

area in the understanding of PZs and PAs. According to Mead, the limits of the PZs,

(also known as bound frequencies) contain the system natural frequencies. Certain

periodic systems (like, supported beams) have the further property that the bounding

frequencies are identical to the system natural frequencies of a single element of the

whole system, with it ends either fully-fixed or free. Signorelli and von Flotow [41]

have considered this problem applied to space lattice structures. Consider one of the

repeating units of the lattice structure used in this thesis, shown in figure H.1, where

the left and right hand sides have three joints. At these joints, other members are

connected in tandem forming the whole structure.

q = Dbayf (H.1)

where the displacement q and force f vectors have dimension 36× 1,which correspond

to 6 degrees of freedom for each joint (3 on the left and 3 on the right hand side). The

dynamic stiffness matrix for the bay Dbay has dimension 36 × 36. The displacement

vector q can be sub-divided in two vectors qT =
[

ql qr

]
and the force vector can

also be written as fT =
[

fl fr

]
, where ql and fl contain the displacements and forces

at the bay left hand side, respectively. qr and fr contain the displacement and forces

at the bay right hand side, respectively. The dynamic stiffness can be written as

Dbay =

 Dll Dlr

Drl Drr

 (H.2)
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where, the sub-matrix Drl relates the vectors of forces fl at left hand side of the bay

to the vector of displacements qr at right hand side of the bay, for instance. Using the

procedure described in [78], equation H.1 can be written in transfer matrix form as

 fr

qr

 =

 Ψa Ψb

Ψc Ψd

 fl

ql

 (H.3)

where,

Ψa = D−1
lr Dll

Ψb = −D−1
lr

Ψc = −DrrD
−1
lr Dll + Drl

Ψd = DrrD
−1
lr


(H.4)

and the relationship in equation H.3 can be written in compact form as

ψr = Ψψl (H.5)

where, ψT
r =

[
fr qr

]
and ψT

l =
[

fl ql

]
.

H.1 Wave mode properties for the transfer matrix

A wave mode propagating along a periodic structure can be characterized by

ψb+1 = λψb (H.6)

which indicates that the cross-sectional state vector at station b+ 1 and b (where b+ 1

is a bay adjacent to the bay b) are related by a multiplication factor λ. This together

with the transfer matrix relationship of equation H.5 forms an eigenvalue problem for

λ. According to [41], the eigenvalues are generally complex and occur in λ and 1/λ

pairs. This means, that for each wave mode there are frequency regions where the

wave propagates without attenuation |λ| = 1 (PZs) and regions in which the wave is

attenuated |λ| < 1 or |λ| > 1 (AZs). From the eigenvalues λ, it is possible to write

λr = e−jkrl (H.7)
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The relationship given in equation H.7 is demonstrated in reference [77]. From equation

H.7 it is possible to find the wavenumber as

kr =
lnλr

−jl
(H.8)

Figure H.1: The repeating unit of the lattice structure (One bay)
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