CONCRETO PROTENDIDO

Orientações Básicas Para a Execução de Obras em Concreto Protendido

Eng. Maria Regina Leoni Schmid Supervisora de Marketing Rudloff Sistema de Protensão Ltda

O sucesso da tecnologia do concreto protendido e a obtenção de todas as vantagens técnicas que ela possibilita estão diretamente relacionados com a qualidade da execução do processo da protensão de uma estrutura, como um todo. A grande responsabilidade que a protensão pode ter na estabilidade da estrutura, requer que ela seja executada com cuidados especiais e o acompanhamento por pessoal especializado e experiente.

Com o objetivo de possibilitar uma orientação básica à execução de estruturas protendidas, expomos a seguir algumas recomendações importantes para a sua realização. Trata-se de um roteiro resumido aplicável a qualquer sistema, visando lembrar de itens importantes que nem sempre são levados em consideração no processo da protensão. Procedimentos mais completos devem ser obtidos junto a normas técnicas e prestadores de serviços de protensão.

Referências Normativas

Recomenda-se às empresas executantes do concreto protendido o conhecimento das normas técnicas nacionais que contêm disposições necessárias à execução adequada da tecnologia, entre as quais destacamos:*

- ▶ NB1: 2003 Projeto de estruturas de concreto
- NBR6349: 1991 Fios, barras e cordoalhas de aço para armaduras de protensão - Ensaio de tracão
- ◆ NBR7187-NB2: 2003 Projeto e execução de pontes de concreto armado e de concreto protendido

- ◆ NBR7482: 1991 Fios de aço para concreto protendido
- ▶ NBR7483: 2004 Cordoalhas de aço para concreto protendido Requisitos
- ◆ NBR7484: 1991 Fios, barras e cordoalhas de aço destinados a armaduras de protensão - Ensaios de relaxação isotérmica
- NBR7681: 1983 Calda de cimento para injeção
- NBR10839: 1989 Execução de obras de arte especiais em concreto armado e concreto protendido
- ◆ NBR 14931: 2004: Execução de estruturas de concreto
- * As edições indicadas acima estavam em vigor no momento desta publicação (12/2005). É conveniente que sua validade seja verificada junto à ABNT - Associação Brasileira de Normas Técnicas.

Recepção do aço e dos materiais de protensão na obra

Na recepção do aço de protensão na obra, devem ser verificados pelo menos os seguintes itens:

- - peso do material fornecido;
- homogeneidade do aço quanto às características geométricas;
- ◆ se o aço apresenta defeitos prejudiciais, tais como: esfoliações, bolhas, fissuras, corrosões, cor, revestimentos, etc.;

- ◆ se o aço contém óleo em sua superfície caso isto aconteça, este terá que ser removido antes da fabricação dos cabos;
- ◆ se, após a abertura dos rolos, as cordoalhas sem tensão mantém flechas inferiores a 15 cm em 2 metros de comprimento - rolos que não obedecerem estes valores devem ser rejeitados;
- ◆ se o acondicionamento das cordoalhas está respeitando as seguintes dimensões aproximadas:
- cordoalhas de 7 fios para protensão aderente: diâmetro interno 76 cm, diâmetro externo 139 cm, peso nominal 2800 kg, altura do rolo 76 cm;
- cordoalhas engraxadas de 7 fios: em rolos sem núcleo, pesando 2100 kg.

No recebimento dos equipamentos de protensão, na obra, devem ser verificados pelo menos os seguintes itens:

- se o equipamento é o correto para a obra;
- ♦ o seu peso, para dimensionar os equipamentos necessários ao seu manuseio;
 - a voltagem dos equipamentos;
 - os acessórios dos equipamentos.

Foto 1: bobinas de aço de protensão

Estocagem dos materiais e equipamentos de protensão

O material deve ser estocado em um local que facilite a sua amostragem e movimentação no canteiro de obra, observando-se os seguintes cuidados mínimos

- ◆ Identificar cada produto na obra, de maneira a evitar trocas involuntárias.
- ◆ Estocar o aço de protensão preferencialmente na embalagem original do fornecedor, sobre piso ou pranchado de madeira, com distância mínima entre o aço e o solo seco de 30 cm.
- ◆ Providenciar cobertura suficiente sobre o aço de protensão, para protegê-lo contra as intempéries.

- ◆ Evitar que cordoalhas engraxadas fiquem no sol por muito tempo, para evitar danificação da capa plástica.
- ◆ Impedir que se use óleo solúvel em água para proteger o aço de protensão contra corrosão.
- ◆ Separar e identificar rolos ou bobinas dediferentes partidas de fornecimento. As partidas recebidas devem ser divididas em lotes, cuidadosamente marcadas, facilitando a amostragem para os respectivos ensaios.
- ▶ Estocar os cabos com uma identificação amarrada, contendo o número do cabo, o seu comprimento e a partida e o lote a que pertence.
- ◆ Caso seja indispensável a execução de solda ou o uso de maçarico nas proximidades do aço de protensão, providenciar proteção que garanta a integridade do aço, para impedir o seu aumento de temperatura ou que ele seja atingido por centelhas de solda.
- ▶ Proteger equipamentos de protensão contra qualquer dano e armazená-los em local coberto, seguro, limpo e seco, com acesso somente de pessoal treinado e qualificado para o seu uso.

Confecção dos cabos

Na fase de confecção dos cabos, devem ser respeitados os seguintes itens:

- ◆ Inspecionar todo o aço de protensão antes do seu uso. O aço deve estar limpo, isento de óleo e de resíduos.
- ▶ Verificar se existe oxidação no aço e providenciar a remoção de oxidações superficiais uniformes. Esta pode ser feita esfregando-se os fios com um tecido grosso ou com uma esponja plástica abrasiva. Em caso de dúvida quanto à gravidade do dano provocado pela oxidação, deverão ser executados ensaios especiais para a comprovação das propriedades mecânicas do aço. Oxidações localizadas, no aço, são mais perigosas que a oxidação uniforme superficial e não devem ser admitidas.
- ◆ Submeter o aço a ensaios para comprovação de suas características mecânicas originais, quando, após período de armazenamento prolongado, corrosão, manuseio inadequado ou outra razão, houver dúvidas sobre a sua qualidade.
- ◆ Impedir que cabos e cordoalhas sejam arrastados sobre o solo ou sobre superfícies abrasivas.
- ◆ Cortar o aço de acordo com o comprimento indicado no projeto, tomando-se o cuidado de verificar se neste já estão incluídos os comprimentos necessários para a fixação dos equipamentos de protensão.

Foto 2: instrumentos para a suspensão de equipamento de protensão

- ◆ Fabricar cada cabo preferencialmente com aço de uma mesma bobina.
- ◆ Impedir o uso de fios dobrados ou torcidos durante a colocação e protensão da armadura.
- ▶ Providenciar que o corte das cordoalhas para a confecção dos cabos seja feito por meio de disco esmeril rotativo ou tesoura. É vedado efetuar no aço de protensão cortes com maçarico, bem como endireitamentos através de máquinas endireitadoras ou qualquer outro processo, pois esses procedimentos alteram radicalmente as propriedades físicas do aço.
- ▶ Providenciar que extremidades do cabo, na região das ancoragens, estejam limpas e isentas de respingos de nata de cimento, argamassa, oxidação ou eventuais irregularidades dos fios, a fim de se garantir o ajuste perfeito das cunhas do macaco de protensão.
- Proteger os cabos fabricados (estirados ou enrolados) das intempéries.
- Montar os cabos de protensão preferencialmente antes da colocação de condutores de eletricidade e outros dispositivos mecânicos.

- ▶ Providenciar emendas entre bainhas por meio de luvas externas feitas com o mesmo material da bainha e diâmetro ligeiramente maior, e com emprego adicional de material de vedação.
- ◆ Providenciar que os materiais utilizados para a vedação das bainhas sejam adequados, sem causar ataque químico ou de origem eletrolítica às armaduras.

Colocação dos cabos

Na fase de colocação dos cabos nas fôrmas, devem ser observados os seguintes itens:

- ◆ Locar as bainhas em relação à fôrma, segundo o projeto, obedecendo as tolerâncias admissíveis em relação às linhas teóricas do projeto.
- ◆ Colocar os cabos conforme ordem definida pela empresa executante da protensão.
- ◆ Colocar as bainhas na fôrma com fixação por meio de apoios constituídos por travessas, caranguejos, estribos ou pastilhas.
- ◆ Usar espaçamento dos suportes das bainhas suficiente para resistir às cargas durante a montagem dos cabos e concretagem da peça, bem como para impedir deslocamentos.
- ◆ Fixar as ancoragens de forma que não sejam permitidos deslocamentos durante os trabalhos subseqüentes.
- ◆ Coincidir o eixo dos cabos de protensão rigorosamente com o eixo das ancoragens e em posição normal às faces da ancoragem.
- Usar preferencialmente travessas ou estribos semicirculares, a fim de se criar uma maior

Foto 3: pré-montagem de cabos aderentes

superfície de contato para a bainha e evitar que a mesma se desloque horizontalmente.

- ◆ Impedir a execução de solda entre as travessas ou estribos de sustentação e a armadura frouxa.
- ◆ Colocar armaduras de fretagem e fendilhamento em todas as ancoragens.
- ◆ Deixar retilíneos os primeiros 50 cm a partir da ancoragem de qualquer cabo.
- ▶ Providenciar, quando necessário, vedações nas ancoragens e nas emendas de bainhas, para evitar entrada de nata nos cabos, na concretagem.
- ▶ Providenciar purgadores para controle da injeção nas extremidades dos cabos, nos pontos altos de cabos longos e obedecendo-se o espaçamento recomendado pela empresa de protensão. É recomendável a distância máxima de 20 m entre os purgadores, e o seu diâmetro externo de 25 mm ou 15 mm.
- ▶ Proteger pontas de cordoalhas, na parte externa dos blocos, com lona plástica.
- ▶ Evitar que as pessoas caminhem na obra pisando nos cabos já colocados.

Verificações a serem realizadas antes da ancoragem

Anteriormente à concretagem, devem ser respeitados os seguintes itens:

Foto 4: pré-montagem de cabos engraxados

- Inspecionar todas as bainhas, seus suportes e purgadores, para se detectar eventuais defeitos, tais como desalinhamentos, mossas, rupturas, orifícios ou deficiências de rigidez ou vedação.
- ◆ Verificar se as placas funil estão fixas nos nichos ou rebaixos, observando-se rigorosamente os ângulos de saída e

dimensões de acordo com o projeto, assim como a fixação das fretagens. As bainhas devem estar sempre ortogonais

com a placa funil.

definitivas.

- ◆ Examinar fixação e estanqueidade das junções entre purgadores, bainhas e cones de ancoragem.
- ▶ Examinar eventuais danos nas bainhas (deformações transversais e perfurações) e corrigi-los.
- ◆ Conferir se foram colocados todos os cabos definidos em projeto e inspecionar a armadura passiva, incluindo armadura de fretagem e fendilhamento.
- ◆ Verificar se há espaço útil suficiente para colocação e operação do equipamento de protensão.

Cuidados durante e após a concretagem

Na fase de concretagem, devem ser respeitados os seguintes itens:

✔ Verificar se o concreto possui trabalhabilidade e diâmetro máximo do agregado compatíveis com o espaçamento de bainhas, ancoragens e armaduras passivas.

- Providenciar apoios para tubos de bombas de concreto, de forma a evitar que encostem nos cabos.
- ▶ Instruir a equipe que executa a concretagem sobre as posições onde devem ser introduzidos os vibradores, para que estes não danifiquem bainhas e purgadores. Recomenda-se que os vibradores tenham diâmetro pequeno e não sejam utilizados diretamente sobre as bainhas e junto às mesmas.
- Evitar que, durante a concretagem, vibradores e a concentração de pessoas danifiquem bainhas, ancoragens e purgadores e os desloquem de suas posições

Foto 5: colocação dos cabos em obra

59

Foto 6: detalhe de purgador e armadura de fretagem junto à ancoragem

- Impedir que o concreto seja lançado a grande altura (≥ 2m).
- ◆ Tomar cuidado especial para, na concretagem, preencher os vazios atrás e em torno das ancoragens.
- ▶ Usar método adequado para retirar eventual nata de cimento que tenha penetrado nas bainhas. Caso a limpeza das bainhas seja feita com água, deve ser seguida da aplicação de jato de ar, para a retirada completa da água, verificando-se antes se a rede de ar não se acha contaminada por óleo.

Verificações que precedem a operação de protenção

- ◆ Preparar dispositivos apropriados para perfeita colocação e operação dos equipamentos de protensão.
- ▶ Limpar e organizar os lugares da obra onde trabalharão os operadores dos macacos e delimitar áreas de segurança contra a permanência de pessoas em locais perigosos, durante a protensão.
- ◆ Verificar se as extremidades dos cabos e as placas funil estão limpas, sem irregularidades e com as inclinações especificadas.

- ◆ Verificar a integridade do concreto nos nichos e em todas as superfícies aparentes e solucionar eventuais problemas antes da protensão.
- Verificar se os blocos de ancoragens estão colocados com todos os seus clavetes (cunhas).
- ◆ Efetuar o reparo de eventuais falhas de concretagem da estrutura.
- ◆ Aferir manômetros do equipamento de protensão antes da primeira utilização e sempre que houver suspeita de indicações incorretas ou a cada 200 operações de protensão.
- ◆ Verificar as condições e extensão dos cabos de força das bombas elétricas, nível de óleo das bombas, aterramento e voltagem dos dispositivos elétricos, conexão dos cabos e purgadores, abertura do macaco com a bomba ligada e eventuais vazamentos.
- ▶ Verificar as pressões que deverão ser atingidas para a introdução da força de protensão.
- Numerar de forma clara e visível os cabos junto às ancoragens ativas e passivas.
- ▶ Verificar no projeto as especificações referentes à protensão: força de protensão e alongamento para cada cabo; extremidades do cabo que serão protendidas; resistência mínima do concreto na ocasião da protensão; fases de protensão em relação à força total; seqüência de protensão dos cabos a serem protendidos em cada fase.

- ◆ Corrigir os alongamentos teóricos através dos ensaios dos lotes de cordoalhas.
- ▶ Determinar áreas de segurança e garantir a não permanência de pessoas nas mesmas durante as operações do equipamento de protensão.
- ▶ Providenciar tabela apropriada para o registro dos principais dados da protensão de cada cabo. Recomenda-se incluir nesta dados de projeto e ensaios.

Protensão

Na fase de protensão, devem ser respeitados os seguintes itens:

- ▶ Iniciar a protensão somente quando o concreto tiver alcançado a resistência mínima indicada em projeto, para poder suportar as tensões concentradas nas regiões da ancoragem. A verificação da resistência do concreto deve ser comprovada por ensaios de ruptura em corpos de prova.
- ◆ Executar a protensão conforme as fases e a seqüência definidas no projeto.
- ◆ Posicionar o macaco sem carga na cordoalha.
- ◆ Verificar se o macaco instalado está perfeitamente ajustado na superfície de apoio da ancoragem. Se houver alguma falha no seu posicionamento, o macaco deve ser retirado e recolocado. Evitar fazer qualquer ajuste depois de introduzida alguma carga.
- Quando a protensão é feita pelas duas extremidades do cabo, providenciar que o aumento

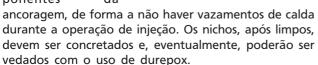
Foto 8: pintura de cordoalhas, para medição de alongamentos

da pressão nos dois macacos seja feito simultaneamente e em intervalos iguais, e que seu descunhamento seja feito um após o outro.

- ◆ Controlar a protensão dos cabos, de forma a impedir que sejam tracionados com força além da especificada em projeto.
- ▶ Para cada cabo, anotar a pressão manométrica usada na protensão e o seu respectivo alongamento. Quando os cabos forem tracionados pelas duas extremidades, o alongamento é calculado utilizando-se a soma das leituras dos dois lados.
- ◆ Suspender a operação de protensão se houver qualquer dúvida sobre o processo.

Aprovação dos resultados de protensão

Após a protensão, devem ser respeitados os seguintes itens:


- ◆ Comparar o alongamento total obtido com o alongamento teórico pré-estabelecido para cada cabo. Na falta de indicação específica no projeto, os valores de alongamento que se afastarem mais ou menos de 10% dos valores previstos devem ser comunicados ao responsável pela obra e/ou ao projetista, para interpretação e eventual tomada de medidas corretivas antes da liberação do cabo.
- Após a cravação, examinar a existência de eventuais escorregamentos dos

fios e comunicá-la ao projetista da estrutura, para que sejam tomadas as medidas cabíveis.

Foto 7: operação de protensão

- Após a aprovação da protensão, cortar as pontas das cordo-alhas junto ao bloco, deixando aproximadamente 3 cm para fora do clavete (cunha). O corte deve ser feito por meio de disco esmeril rotativo ou tesoura.
- ▲ Após o corte das cordoalhas, apicoar a superfície de concreto, limpar os blocos, executar ferragem (se for o caso), colocar forma juntamente com os purgadores para injeção e efetuar a vedação de todas as aberturas das peças componentes da

A injeção de calda de cimento nos cabos de protensão aderente é fundamental para garantir o seu perfeito funcionamento. Seus objetivos são assegurar a aderência mecânica entre a armadura de protensão e o concreto e garantir a proteção da armadura contra a corrosão.

Obedecendo as normas técnicas sobre o assunto, recomenda-se que a operação de injeção seja realizada em no máximo quinze dias após a protensão.

Deve incluir, entre outros, cuidados com:

- temperatura ambiente;
- características dos equipamentos utilizados;
- ◆ lavagem dos cabos de protensão previamente à injeção;
 - seqüência correta do processo;
 - velocidade da injeção;
- composição e o armazenamento de cada elemento constituinte da nata de injeção;

Foto 9: operação de injeção dos cabos

- homogeneidade e fluidez da nata;
- resistência da nata;
- fechamento e corte dos purgadores;
- registro dos dados da injeção e de qualquer anomalia existente;
- determinação de áreas de segurança e garantia da não permanência de pessoas nas mesmas durante as operações do equipamento de injeção;
 - ◆ resolução de eventuais problemas.

Referências Bibliogáficas

- 1. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14931**: Execução de estruturas de concreto Procedimento. Rio de Janeiro, 2004.
- 2. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7483**: Cordoalhas de aço para concreto protendido Requisitos. Rio de Janeiro, 2004.